
ibm.com/redbooks

Front cover

IBM System i Security:
Protecting i5/OS Data with
Encryption

Beth Hagemeister
John Concini
Milan Kalabis
Robin Tatam

Yessong Johng

Understand key concepts and
terminology of cryptography

Properly plan for i5/OS data
encryption

See implementation
scenarios of data encryption

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System i Security: Protecting i5/OS Data with
Encryption

July 2008

SG24-7399-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (July 2008)

This edition applies to IBM i5/OS V5R4.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this book . xi
Become a published author . xii
Comments welcome. xii

Part 1. Introduction to data encryption. 1

Chapter 1. Data encryption: the big picture . 3
1.1 Introducing encryption. 4

1.1.1 What is data encryption . 4
1.1.2 What drives the requirement . 4
1.1.3 Where to protect the data . 5

1.2 Building on top of a secure foundation . 6
1.2.1 Only one piece of the security puzzle . 6
1.2.2 Security is not only about privacy . 6
1.2.3 Surely not on System i . 7
1.2.4 Security initiatives to consider. 7
1.2.5 A final word on traditional security . 8

1.3 What this book is about . 8
1.3.1 Book objectives. 8
1.3.2 Book road map . 9

Chapter 2. Algorithms, operations, and System i implementations. 11
2.1 Cryptographic algorithms . 12

2.1.1 Cipher algorithms . 12
2.1.2 Key distribution algorithms . 17
2.1.3 One-way hash algorithms . 17
2.1.4 Random number generation algorithms . 18
2.1.5 Summary of algorithms . 19

2.2 Cryptographic operations . 19
2.2.1 Data confidentiality . 20
2.2.2 Data authentication, integrity, and non-repudiation. 20
2.2.3 Key and random number generation . 21
2.2.4 Financial PINs. 21
2.2.5 Key management . 22

2.3 System i cryptographic implementations overview . 22
2.3.1 Cryptographic service providers . 22
2.3.2 Cryptographic interfaces . 23

Chapter 3. Key management concepts . 25
3.1 Key management considerations . 26
3.2 Size matters . 26
3.3 Establishing a key value . 28

3.3.1 Generating a key value . 28
3.3.2 Using a known key value . 28
© Copyright IBM Corp. 2008. All rights reserved. iii

3.4 Storing keys . 29
3.5 Key separation . 30

3.5.1 Key hierarchy . 30
3.5.2 Key use . 31
3.5.3 Keystore authorization . 32
3.5.4 Key management responsibilities . 32

3.6 Backing up keys . 32
3.7 Changing keys . 33
3.8 Key distribution . 34
3.9 Key destruction . 35

Part 2. Planning for data encryption . 37

Chapter 4. Analyzing needs and defining scope . 39
4.1 Needs analysis . 40
4.2 Defining the scope . 43

4.2.1 What data to protect . 43
4.2.2 Define your requirements . 44
4.2.3 Evaluate the impact of change . 45
4.2.4 Return on investment . 46

Chapter 5. Managing keys on System i. 47
5.1 Cryptographic services . 48

5.1.1 Master keys. 48
5.1.2 Keystore files . 51
5.1.3 Changing a master key . 52
5.1.4 Master key variants . 52
5.1.5 Using keys in an application . 52
5.1.6 Key distribution . 54
5.1.7 Generating keys . 55
5.1.8 Backing up keys . 55

5.2 CCA key management . 55
5.2.1 Configuring the cryptographic coprocessor. 56
5.2.2 Master keys. 57
5.2.3 Key tokens . 58
5.2.4 Keystore files . 58
5.2.5 Retain keys . 59
5.2.6 Control vectors . 59
5.2.7 Key identifier . 60
5.2.8 Key distribution . 60
5.2.9 Changing master keys . 62
5.2.10 Generating keys . 62
5.2.11 Backing up keys . 63
5.2.12 Using multiple coprocessors . 63

5.3 Roll your own key management . 64
5.4 Establishing a secure keystore environment. 65

5.4.1 Object security 101 . 65
5.4.2 Create user profiles. 66
5.4.3 Location, location, location . 66
5.4.4 Secure the keystore . 67
5.4.5 Accessing the keystore . 68
5.4.6 Auditing keystore access . 69
iv IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 6. Choosing a data encryption method . 71
6.1 Factors to consider . 72
6.2 Choosing an interface . 73
6.3 Choosing an algorithm . 73

6.3.1 Cipher algorithm . 73
6.3.2 Hash and HMAC algorithms . 75

6.4 Tips and techniques . 75

Chapter 7. Database considerations . 77
7.1 Understanding how the database is used . 78
7.2 How encryption impacts database structure . 78

7.2.1 Modifying current record layout structure . 80
7.2.2 Normalizing the encrypted fields . 81
7.2.3 Key version field . 82

7.3 Converting the plaintext data to ciphertext . 83
7.3.1 Adjusting to database structure changes . 84
7.3.2 Encrypting existing data . 86
7.3.3 Reducing the initial data conversion window . 87
7.3.4 Validating the encrypted data . 89

7.4 Common tools for data maintenance and inquiry . 90
7.4.1 AS/400 Data File Utility (DFU) . 90
7.4.2 IBM Query for i5/OS (Query/400) . 93
7.4.3 Interactive SQL . 94
7.4.4 Other tools . 94

Chapter 8. Application considerations . 97
8.1 Accommodating database changes . 98

8.1.1 Record format changes. 98
8.1.2 Database normalization . 98

8.2 Working with encrypted data. 98
8.2.1 Performing encryption tasks with database triggers . 99
8.2.2 Determining encryption state . 100
8.2.3 Data sorting. 103
8.2.4 Random access to encrypted data . 106
8.2.5 Triggers. 106

8.3 Other considerations . 106
8.3.1 Spooled files . 106
8.3.2 Exported data . 107

Chapter 9. Backup considerations . 109
9.1 Managing keys on a backup system . 110

9.1.1 Coordinating keys between multiple systems . 110
9.1.2 Translating keystores . 110
9.1.3 Transporting keys between systems. 110

9.2 Securing backup data . 110
9.2.1 Transporting data to the backup system. 110
9.2.2 Working with encrypted data between multiple systems. 111

Part 3. Implementation of data encryption . 113

Chapter 10. SQL method . 115
10.1 Preparing for encryption . 116

10.1.1 Encryption prerequisites . 116
10.1.2 Identifying changes to your database . 116
 Contents v

10.1.3 Analyzing impact to performance . 117
10.2 Encrypting data using an encryption password. 118

10.2.1 Associating a hint with a password . 118
10.2.2 Using a password in a view. 119
10.2.3 Using password and hint as encryption parameters . 119

10.3 Encrypting data with triggers. 120
10.3.1 Using classical triggers . 120
10.3.2 Using Instead Of Triggers . 120

10.4 Using user-defined functions (UDFs) with encrypted data . 121
10.5 Encrypting with stored procedures . 127

Chapter 11. Cryptographic Services APIs method . 133
11.1 Scenario description . 134

11.1.1 Setting up a master key . 134
11.1.2 Setting up a symmetric data encryption key . 135
11.1.3 Encrypting data . 136
11.1.4 Decrypting data. 137
11.1.5 Scenario analysis and summary of APIs used . 138

11.2 Scenario application setup . 139
11.2.1 Sample application download and initial setup . 139
11.2.2 Creating commands for sample application scenario . 139

11.3 Using the scenario application . 143
11.3.1 Create a master key: SET_MSTR_K command . 143
11.3.2 Create symmetric keys: GEN_SYMKEY command . 152
11.3.3 Encrypt data: SET_DATA command. 170
11.3.4 Decrypt data on source system: GET_DATA command. 185
11.3.5 Decrypt data on target system . 194
11.3.6 Execution example of scenario application. 198

11.4 Another scenario: for external UDFs functions . 202
11.4.1 External UDFs functions scenario overview . 204
11.4.2 HASH_DATA UDF function. 204
11.4.3 DEC_DATA UDF function. 207
11.4.4 Running DEC_DATA command . 209
11.4.5 Execution example of external UDFs function scenario 213
11.4.6 Using the external trigger function . 218

Chapter 12. HW-based method . 229
12.1 Scenario overview. 230

12.1.1 Scenario A: exchanging secret data between two systems 230
12.1.2 Scenario B: encryption/decryption of data on the same system 232

12.2 Prerequisites and assumptions . 233
12.3 Scenario environment setup . 234
12.4 Exchanging secret data between two systems (scenario A) 235

12.4.1 Two systems scenario: step-by-step guide. 235
12.4.2 Execution example of scenario A . 262

12.5 Data encryption/decryption on same system (scenario B) . 268
12.5.1 Single system scenario: step-by-step guide . 268
12.5.2 Execution example of scenario B . 275

Appendix A. Additional material . 281
Locating the Web material . 281
Using the Web material . 281

System requirements for downloading the Web material . 281
How to use the Web material . 282
vi IBM System i Security: Protecting i5/OS Data with Encryption

Related publications . 283
IBM Redbooks . 283
Other publications . 283
Online resources . 283
How to get Redbooks. 283
Help from IBM . 284

Index . 285
 Contents vii

viii IBM System i Security: Protecting i5/OS Data with Encryption

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
AS/400®
DB2 Universal Database™
DB2®
eServer™

i5/OS®
IBM®
iSeries®
Redbooks®
Redbooks (logo) ®
System i™

System i5™
System/38™
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Java, JDK, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x IBM System i Security: Protecting i5/OS Data with Encryption

http://www.ibm.com/legal/copytrade.shtml

Preface

Regulatory and industry-specific requirements, such as SOX, Visa PCI, HIPAA, and so on,
require that sensitive data must be stored securely and protected against unauthorized
access or modifications. Several of the requirements state that data must be encrypted.

IBM® i5/OS® offers several options that allow customers to encrypt data in the database
tables. However, encryption is not a trivial task. Careful planning is essential for successful
implementation of data encryption project. In the worst case, you would not be able to retrieve
clear text information from encrypted data.

This IBM Redbooks® publication is designed to help planners, implementers, and
programmers by providing three key pieces of information:

� Part 1, “Introduction to data encryption” on page 1, introduces key concepts, terminology,
algorithms, and key management. Understanding these is important to follow the rest of
the book.

If you are already familiar with the general concepts of cryptography and the data
encryption aspect of it, you may skip this part.

� Part 2, “Planning for data encryption” on page 37, provides critical information for planning
a data encryption project on i5/OS.

� Part 3, “Implementation of data encryption” on page 113, provides various implementation
scenarios with a step-by-step guide.

The team that wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Beth Hagemeister is an IBM Advisory Software Engineer with over 20 years of experience
developing cryptographic software for System/38™, AS/400®, and System i™ systems.

John Concini is a Senior Software Engineer at Vision Solutions, Inc., in Irvine, California. His
25 years of experience in software analysis and design includes development of compilers,
communications software, and financial applications. Since 2002, he has contributed to high
availability (HA) and disaster recovery (DR) solutions on the IBM System i platform.

Milan Kalabis is an IT Specialist working for IBM Czech Republic. He is an i5/OS Specialist
and his expertise is in cryptography and communication.

Robin Tatam is a Senior System i Engineer for MSI Systems Integrators, an IBM Premier
Business Partner in Des Moines, Iowa (USA). He has 18 years of experience in AS/400 and
System i environments. Currently, Robin leads MSI’s System i security practice and regularly
performs client training, vulnerability assessments, and security-related resolution services.
Before joining MSI, Robin focused on commercial application development, including
modernization with CGI and the IBM WebFacing Tool. His varied expertise has resulted in
more than a dozen IBM certifications.

Yessong Johng is an IBM Certified IT Specialist at the IBM International Technical Support
Organization, Rochester Center. He started his IT career at IBM as a S/38 Systems Engineer
in 1982 and has been with S/38, AS/400, iSeries®, and System i now for 25 years. He writes
© Copyright IBM Corp. 2008. All rights reserved. xi

extensively and develops and teaches IBM classes worldwide on the areas of IT
Optimization, and his topics include Linux®, AIX® 5L™, and Windows® implementations on
the System i platform. His other coverage areas include TCP/IP, Data and Networking
Security, and WebSphere®.

Thanks to the following people for their contributions to this project:

Rich Diedrich
Terry Hennessy
Kent Milligan
Chad Sandbern
Kevin Trisko
IBM Rochester

Thomas Barlen
IBM Germany

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xii IBM System i Security: Protecting i5/OS Data with Encryption

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction to data
encryption

This part introduces key concepts, terminology, algorithms, and key management.
Understanding these is important in order to understand the rest of the book.

Part 1
© Copyright IBM Corp. 2008. All rights reserved. 1

2 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 1. Data encryption: the big picture

Traditionally, security has focused on establishing a perimeter of defense around system
assets. While securing access points continues to be an important part of security, the typical
business cannot afford to lock down its entire enterprise.

More and more, open networks are used to connect customers, partners, employees,
suppliers, and their data. While this offers significant advantages, how does a business
protect its information assets and comply with industry and legislative requirements for data
privacy and accountability?

Encryption is part of the answer.

In this chapter, you will be introduced to some of the reasons that organizations are
considering encryption technology. We also review the solid foundation that encryption
requires in order to be deployed successfully.

1

© Copyright IBM Corp. 2008. All rights reserved. 3

1.1 Introducing encryption

If you pick up virtually any newspaper, or check any major news Web site, you will not have to
wait long to see the next headline story of private data being exposed by either accidental or
nefarious means. Whether it is a lost or stolen mobile computer, an intercepted electronic
transmission, or a hacker breaching an organization’s perimeter defenses, the numbers are
staggering and do not show any sign of slowing.

Many organizations are now turning to encryption to protect their data, with almost an
expectation that, at some point, their data will fall victim to the statistics.

1.1.1 What is data encryption

Encryption, or more properly cryptography, is the mathematical discipline, or the
implementation of such, that transforms understandable information into unintelligible data,
for the purpose of hiding and authenticating information.

Cryptographic functions on System i are used transparently, for example, with an i5/OS
password, automatically in the configuration of technologies such as SSL, and manually in
user applications.

By securing the data using cryptographic measures, information can travel throughout the
network while maintaining data confidentiality and integrity, while user applications can also
access cryptographic functions directly via application programming interfaces (APIs).

Using cryptographic functions can help provide the following:

� Data confidentiality (secrecy or privacy)

Encryption is used to render data unintelligible. Only authorized entities are able to use
decryption to make the data intelligible again.

� Data integrity

Several cryptographic functions, such as digital signatures, message authentication
codes, and keyed hashes, are used to help ensure data has not been altered.

� Authentication of communicating parties

Digital signatures, message authentication codes, and some key agreement protocols are
used to verify the origin of data.

� Non-repudiation

A digital signature is used to prove the involvement of an entity in a previous action.

1.1.2 What drives the requirement

Organizations that consider encryption technologies are usually doing so for one of the
reasons discussed below.

For more specific examples refer to “Regulations and standards” on page 40

Government regulation
Following a number of high-profile corporate scandals, many governments are stepping in to
ensure that businesses conduct business in a safe and ethical manner.
4 IBM System i Security: Protecting i5/OS Data with Encryption

In recent years, the U.S. Government and many states have enacted laws that directly impact
the storage and availability of information, including the protection of private data.

Organizations of various sizes and in many business sectors are now required to pass audits
to certify that they are compliant. Non-compliance can involve large fines and even jail time.

Industry rules
As with government policy, industry policy can mean the difference in a business being able
to operate and not being able to operate. For example, large companies that do not
successfully reach the standards imposed by the major credit card firms can find themselves
faced with significant fines and even the suspension of their ability to process card
transactions—a feature that many retail organizations rely on to conduct business.

Business requirements
With the frequency of data breaches, it is becoming a market advantage just to prevent being
next in the list.

Organizations that operate in a competitive marketplace, such as the Internet, now not only
have to promote their products and services, but also reassure the companies and individuals
that purchase them, that when they provide their private information, it is going to be
maintained securely. Similarly, companies that rely on proprietary information to separate
themselves in the market, such as a unique formula or recipe, must protect that information or
face losing their competitive edge.

Very large organizations often have the power to dictate to business suppliers that they either
conform with published security policies, or they will find other suppliers. Often this is
indicative of legal requirements that all links in their supply-chain be certified as secure. It is
foreseeable that this may go as far as to requiring a supplier to pass a legislative audit to
which they would not normally be subjected.

Last, but definitely not least, forward-thinking organizations realize that the requirement for
encryption is only going to increase, and they should start planning for that infrastructure now.

1.1.3 Where to protect the data

Data protection falls into two main categories, as explained below.

Data-in-motion
Also known as data-in-flight, this term generically refers to protecting information any time the
data leaves its primary location. For example, when data is transmitted from the database
across any type of network (but typically non-trusted segments such as the public Internet),
we look to use technologies such as Secure Sockets Layer (SSL), Virtual Private Networks
(VPNs) and IP Security (IPSec) to assure data confidentiality (privacy), and other
technologies such as digital certificates, message authentication codes, and keyed hashes,
to ensure data integrity.

Data-in-motion also encompasses backup media, when that media leaves the data center—a
core requirement for any valid disaster recovery strategy. We see policies that range from
tapes sitting in employee cars until they are taken home (not recommended), to the
contracted collection and storage by professional data storage firms, and both carry the
significant risk of an unauthorized person coming into possession of your valuable
information. During security assessments, we have even seen seemingly secure corporations
that set tapes in public hallways awaiting courier pickup.
Chapter 1. Data encryption: the big picture 5

Electronic mail is another area, often overlooked as corporate data, that is still an open target
for many organizations. It is relatively easy to intercept mail that may contain proprietary
corporate details and confidential dialogue. It is also not difficult to alter that mail before
forwarding it to the intended recipient.

All of these areas can be addressed with encryption-based technologies.

Data-at-rest
Protecting data as it resides in the database is referred to as at-rest.

On System i, this protection entails utilization of the native i5/OS security controls, in
conjunction with database encryption.

With the attention that is paid to securing data-in-motion, the database itself is often a much
easier target to attack. By building layers of security over that database, you first increase the
level of difficulty for an unauthorized user to even gain access to the data, and then
compound that with the fact that private data is not stored in human-readable form.

If encryption is used as part of the strategy for the protection of data-at-rest, this also
indirectly addresses the issue of exposed tape media as, even if tapes fall into the wrong
hands, the data stored on them is unreadable without the correct key.

Of course, all of this assumes that you have enacted the appropriate key management
techniques, as discussed in Chapter 5, “Managing keys on System i” on page 47.

1.2 Building on top of a secure foundation

Before we discuss any encryption specifics, we need to point out that encryption is not an
all-in-one solution to security.

Without an overall security strategy and careful consideration of all security aspects,
encryption may cause more harm than good.

1.2.1 Only one piece of the security puzzle

If your goal for encryption is to maintain data privacy during transmission, or to protect your
backups when the media leaves your physical control, then basic i5/OS security-related
controls, such as user profile attributes and system values, may seem to have little relevance.

However, before you embark on any encryption initiative, it is imperative to first take a good
look at how solid your security environment is in its existing configuration. If you do not, then
you run the risk of building a security infrastructure that crumbles under its own weight.

1.2.2 Security is not only about privacy

Many people think of security as a synonym for privacy, and encryption as a vehicle for
accomplishing it. However, this overlooks another significant reason that we need to establish
a good security foundation. Our need for privacy is only truly satisfied if the information that
we are protecting is accurate. Why bother encrypting information if its integrity cannot even
be assured? If we engage in a project to encrypt your personal credit information, would you
consider it to be truly secure if the data had been sitting in a database that everyone had
unrestricted access to prior to the encryption? Probably not (and there is an entire industry
selling consumer credit reports to prove it).
6 IBM System i Security: Protecting i5/OS Data with Encryption

Security is also about maintaining the availability and integrity of your server as well as the
information that resides on it, neither of which can be guaranteed without good security
controls.

� If a user can alter the database at-will then the integrity of the data is in question.

� If a user has the ability to power down the server, and many unknowingly do so, then it
does not even matter whether the data is encrypted, as it cannot be used for the legitimate
business purpose for which we are storing it.

� If the user has the ability to alter the data after it is encrypted, then there is a good
likelihood that the information can never be retrieved.

When faced with establishing security, we often focus on the tasks that we know how to
perform, or address the exposures that we feel represent the greatest risk. But in reality, true
security comes only when we address all of the risks.

� Why go to the trouble of locking your car if all of the windows are down?
� Why close the windows and lock the doors if everyone in the parking lot has a key?

It is only a matter of time before someone comes along with the desire to drive off with your
car and you will be completely helpless to prevent them.

1.2.3 Surely not on System i

In their 2007 study, PowerTech (http://www.powertech.com), a System i security vendor,
revealed that the average system that they audited had 82 profiles with All Object (*ALLOBJ)
special authority. In addition to numerous other capabilities, this authority provides a user with
read/write access to every record in every file in every library.

This access comes regardless of any restrictions that you may have established for those
files and, while it can be argued that encryption will still help mask private data from these
individuals, that argument falls short when that individual realizes that they have the ability to
access the keys to decrypt that data, as well as the ability to simply corrupt the ciphertext data
so that it cannot be recovered.

Understand, however, that even a user without All Object special authority may have
unrestricted access to your information if files are not properly secured at the object level.
Object security controls have been included in the operating system since the servers
inception, yet many shops still rely on trivial controls provided by their application or, worse
yet, no controls at all.

1.2.4 Security initiatives to consider

Although the following list is not exhaustive, it provides suggestions for consideration. If you
have not embarked on resolving the issues that pertain to your enterprise, then we strongly
recommend that you start here:

� Establish a quality System i security policy to measure yourself against. Open source
security policies exist if you do not wish to write your own.

� Hire an expert to perform a security analysis. Ensure that the person is experienced with
security on System i, as this server is unique. Have them first review and then measure
your System i against your security policy. If you believe that you are secure, this will
serve to confirm and document that belief.

� Work to remove all special authorities from any user who does not have a demonstrable
need for that administrative function. All Object is not the only capability that means
Chapter 1. Data encryption: the big picture 7

http://www.powertech.com

vulnerability on your system. For occasional access requirements, combine mechanisms
such as command-line restrictions, profile switching, and profile auditing.

� Use authority controls provided in i5/OS to secure your objects and libraries. Employ
profile switching and authority adoption techniques to enable data access through
approved application interfaces.

� Establish system value settings based on your security policy requirements. Actively
monitor for changes to these values.

� Control programmers using change management procedures and segregated test
environments.

� Control and audit your client-initiated traffic (FTP, ODBC, and so on) using exit-point
technology. You can write your own or buy them off the shelf.

� Audit administrative activities to security journals and follow policy on how that information
is going to be reviewed.

1.2.5 A final word on traditional security

It is your responsibility to leverage the controls provided to you in i5/OS. For those that do, the
System i has proven itself to be a formidable foundation, and encryption is a good building
block to sit atop that. For those that do not, then encryption may not be the answer, as it
cannot secure your data alone.

For more information about i5/OS security, refer to the following:

� IBM System i Security Guide for IBM i5/OS Version 5 Release 4, SG24-6668

� iSeries Security Reference Version 5, SC41-5302-06

� IBM Information Center, Version 5 Release 4 Web site

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity
.htm

1.3 What this book is about

The focus of this book is on using cryptographic measures to secure data at rest. In other
words, we examine how to protect data stored within a database file using cryptographic
functions (specifically encryption, decryption, and authentication), as well as how to establish
and maintain the keys that are critical to the availability and protection of that data.

We assume that you have taken heed of our warnings, and established a solid foundation via
appropriate perimeter security and i5/OS object-level controls.

1.3.1 Book objectives

When you finish reading this book, our hope is that you will have a solid understanding of:

� Common cryptographic terms and concepts
� Available algorithms
� Key management techniques
� Database considerations
� Native application considerations
� SQL features
8 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity.htm

We walk you through each topic using a series of explanations as well as practical examples.

1.3.2 Book road map

This book is outlined below:

� Part 1, “Introduction to data encryption” on page 1

Read Part 1 if you have little to no knowledge of cryptography. If you do understand
cryptography, you may still want to read 2.3, “System i cryptographic implementations
overview” on page 22, for an overview of cryptography on System i.

– Chapter 1, “Data encryption: the big picture” on page 3

This is the current chapter that you are reading, which presented where encryption fits
into the entire security structure.

– Chapter 2, “Algorithms, operations, and System i implementations” on page 11

This chapter introduces the novice to the various types of cryptographic algorithms and
how they are combined to form different cryptographic operations. This chapter also
outlines the System i cryptographic service providers and cryptographic interfaces.

– Chapter 3, “Key management concepts” on page 25

This chapter contains a general discussion on key types, key size, generating keys,
storing keys, key separation, key distribution, key life-span, and key destruction.

� Part 2, “Planning for data encryption” on page 37

Read Part 2 to help you understand your requirements, the options that you have for
encrypting data at rest, and how it will affect your database applications.

– Chapter 4, “Analyzing needs and defining scope” on page 39

This chapter introduces some of the common legislation pertaining to data security,
and then outlines some topics about evaluating how encryption can be deployed in
your organization.

– Chapter 5, “Managing keys on System i” on page 47

Chapter 5 introduces two System i key management interfaces and also discusses
implementing your own.

– Chapter 6, “Choosing a data encryption method” on page 71

Chapter 6 provides guidance in choosing a cryptographic interface, a cryptographic
algorithm, and mode of operation. It also provides some additional tips and techniques.

– Chapter 7, “Database considerations” on page 77

This chapter discusses the impact that hosting encrypted data has on i5/OS database
design, how you move to an encrypted data model, and also how encrypting your data
affects some popular utility applications commonly used to add, update, and view file
data.

– Chapter 8, “Application considerations” on page 97

This chapter discusses the programming considerations for earlier applications when
working with data stored in encrypted form.

– Chapter 9, “Backup considerations” on page 109

This chapter discusses backing up keys and the data that they encrypt.

� Part 3, “Implementation of data encryption” on page 113

Part 3 provides examples and discussions of three methods for encrypting data—SQL,
Cryptographic Services APIs, and using the Cryptographic Coprocessors.
Chapter 1. Data encryption: the big picture 9

– Chapter 10, “SQL method” on page 115

This chapter demonstrates how SQL provides a simple and convenient method for
encrypting and decrypting data. It also discusses how SQL does not provide key
management, and provides sample functions to assist with the management of
passwords and keys.

– Chapter 11, “Cryptographic Services APIs method” on page 133

This chapter demonstrates use of the Cryptographic Services APIs, which primarily
use software-based encryption and optionally the 2058 Cryptographic Accelerator.

– Chapter 12, “HW-based method” on page 229

In this chapter, we demonstrate use of the Cryptographic Coprocessor 4764/4758 for
secure hardware-based cryptography. The Common Cryptographic Architecture (CCA)
API set is used to interface with the Cryptographic Coprocessor 4764/4758 hardware.
10 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 2. Algorithms, operations, and
System i implementations

Different cryptographic operations may use one or more algorithms. You choose the
cryptographic operation and algorithms depending on your purpose. For example, for the
purpose of ensuring data integrity, you might want to use a message authentication code
(MAC) operation with the Advanced Encryption Standard (AES) algorithm.

System i supports many cryptographic algorithms and operations via four programming
interfaces.

2

© Copyright IBM Corp. 2008. All rights reserved. 11

2.1 Cryptographic algorithms

A cryptographic algorithm is a mathematical procedure that is used in the transformation of
data for the purpose of securing the data.

2.1.1 Cipher algorithms

In this book, when we speak of a cipher algorithm, we are referring to a cryptographic
algorithm that can transform understandable information (plaintext) into an unintelligible
piece of data (ciphertext), and can transform that unintelligible data back into understandable
information.

The cipher algorithms supported by i5/OS are all in the public domain. Therefore, the
algorithm itself is not secret. So what protects the data? The cipher algorithm requires a key
as input. It is the key that instructs the algorithm how to encrypt (scramble) and decrypt
(unscramble) the data. It cannot be emphasized enough that the security of the encrypted
data depends on safeguarding your key.

There are two types of cipher algorithms: symmetric and asymmetric.

Symmetric algorithms
With a symmetric or secret key algorithm, the key is a shared secret between two
communicating parties. Encryption and decryption both use the same key.

Note: There are many ways of rendering data unreadable, and you might be tempted to
write your own. You should not. The development of cryptographic algorithms is the work
of highly trained cryptographers. Even then, the algorithms are submitted to extreme
scrutiny by the security community, and the algorithms are often found lacking. The
algorithms addressed in this book have been approved by the security community and
most have become standards.
12 IBM System i Security: Protecting i5/OS Data with Encryption

In Figure 2-1, Alice and Bob have previously exchanged a key via a secure method. (Methods
of key distribution are discussed in 3.8, “Key distribution” on page 34.) When Alice encrypts
her message, she must supply the key to the encryption routine. When Bob receives the
encrypted message, he also must supply the key to decrypt the message. Others may
intercept the message, but without the key, it is unreadable.

Figure 2-1 Symmetric cipher

There are two types of symmetric key algorithms:

� Block cipher

In a block cipher, the cipher algorithm works on a fixed-size block of data. For example, if
the block size is eight, eight bytes of plaintext are encrypted at a time. Normally, the user's
interface to the encrypt/decrypt operation handles data longer than the block size by
repeatedly calling the low-level cipher function.

� Stream cipher

Stream ciphers do not work on a block basis, but convert 1 bit (or 1 byte) of data at a time.
Basically, a stream cipher generates a keystream based on the provided key. The
generated keystream is then XORed with the plaintext data.

Block ciphers
The following block ciphers are supported by i5/OS.

� DES

Data Encryption Standard (DES), also known as Data Encryption Algorithm (DEA), was
adopted as a Federal Information Processing Standard (FIPS) in 1976. It is described in
FIPS Pub 46-3, Data Encryption Standard (DES), at the following URL:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

Although DES is still widely used, it is no longer considered secure due to its short key
length. The FIPS standard was withdrawn in 2005. You should not use DES except for
compatibility purposes.

"#4f$^.TY#3~|>"

"Hello Bob..."

"#4f$^.TY#3~|>"

"Hello Bob..."

BobAlice

Encrypt DecryptShared secret key
Chapter 2. Algorithms, operations, and System i implementations 13

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

� TDES

Triple DES (TDES), also known as Triple Data Encryption Algorithm (TDEA), was the
natural successor to DES. TDES uses the DES algorithm three times with either a
double-length or a triple-length DES key. TDES operates on a block of plaintext by doing a
DES encrypt, followed by a DES decrypt, and then another DES encrypt. Therefore, it
uses three DES keys. If only two DES keys are supplied (called 2TDES), the first key is
used for both encrypt operations. (When three keys are supplied, it is called 3TDES.) The
National Institute of Standards and Technology (NIST) defines TDES in NIST Special
Publication 800-67, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher at the following URL:

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf

� AES

Advanced Encryption Standard (AES) was adopted by NIST after an international
competition in 2001 and is now the official replacement to DES. Because the performance
of AES is better than TDES, it has gained widespread use. AES is documented in FIPS
Pub 197, Advanced Encryption Standard (AES), at the following Web site:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

� RC2

Rivest Cipher 2 (RC2) was invented by Ron Rivest, co-founder of RSA Data Security, in
the 1980s. RC2 has a variable key size. It was designed as a replacement for DES with
special export privileges for a small key size. Because of this and its performance in
comparison to DES, it gained widespread use. RC2 is described in RFC 2268, A
Description of the RC2 Encryption Algorithm at the following Web site:

http://www.ietf.org/rfc/rfc2268.txt

Because block ciphers encrypt a block of data at a time, two problems present themselves:

� Patterns can be left in the encrypted data. Consider how the start and end of messages
will often repeat. When using the same key, the same block of plaintext will always encrypt
to the same ciphertext. Cryptanalysts can use this information to mount attacks.

� The plaintext data must be a multiple of the block size. If not, the data must be padded
before encrypting.
14 IBM System i Security: Protecting i5/OS Data with Encryption

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ietf.org/rfc/rfc2268.txt

Modes of operation are used to deal with both these problems. A mode of operation defines a
means to add feedback into the encryption operation to mask patterns in the data. Some
modes of operation also deal with plaintext data whose length is not on a block boundary.
More information about modes of operation can be found in NIST Special Publication
800-38A, Recommendation for Block Cipher Modes of Operation at the following URL:

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

� CBC

With Cipher Block Chaining (CBC) mode, each block of plaintext is XORed with the
previous ciphertext block before being encrypted. This will hide patterns in the data. CBC
mode is depicted in Figure 2-2.

Figure 2-2 Cipher Block Chaining

Note that CBC mode requires an initialization vector (IV). Because there is no previous
ciphertext to XOR into the first block of plaintext, an IV must be supplied. Using an IV is
described in more detail in Chapter 6, “Choosing a data encryption method” on page 71.

CBC is usually your best choice of mode.

� CUSP

Cryptographic Unit Support Program (CUSP) is a special type of CBC mode documented
in the z/OS ICSF Application Programmer's Guide, SA22-7522. It is used for handling
data not a multiple of the block length. V5R4 i5/OS does not support CUSP mode of
operation, but an application can implement it. For details refer to“AES” on page 74.

� ECB

Electronic Code Book (ECB) is also a mode of operation, but without any feedback
mechanism applied. Therefore, it does not solve either of the problems above. ECB
should only be used when encrypting random data, such as keys.

Stream ciphers
The Rivest Cipher 4 (RC4) stream cipher is supported by i5/OS. RC4 was invented by Ron
Rivest in 1987. It is probably the most widely used stream cipher. It is used by Secure
Sockets Layer (SSL) to protect Internet traffic. RC4 is an extremely efficient algorithm, and
like all stream ciphers, the ciphertext will always be the same length as the plaintext. The
disadvantage of using RC4 is that it is difficult to get the security correct. Specifically, key
generation must be done correctly, or security will be severely compromised.

Plaintext

Block Cipher
Encryption

Ciphertext

XOR

Key

Plaintext

Block Cipher
Encryption

Ciphertext

XOR

Key

Plaintext

Block Cipher
Encryption

Ciphertext

XOR

Key

IV
Chapter 2. Algorithms, operations, and System i implementations 15

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

Asymmetric algorithms
One of the difficulties of symmetric key algorithms is exchanging the key. How do Alice and
Bob exchange their shared secret key in a secure manner?

With an asymmetric or public key algorithm (PKA), a pair of keys is used. One of the keys,
the private key, is kept secret and is not shared with anyone. The other key, the public key, is
not secret and can be shared with anyone. When data is encrypted by one of the keys, it can
only be decrypted and recovered by using the other key. The two keys are mathematically
related, but it is virtually impossible to derive the private key from the public key.

In Figure 2-3, Bob has generated a private/public key pair and has sent his public key to Alice.
Alice encrypts her message with Bob’s public key. Bob is the only party that can decrypt the
message because only he has possession of the corresponding private key.

Figure 2-3 Asymmetric cipher

The advantage of using asymmetric keys is that the public key can be distributed freely
without any security exposures. Data encrypted with the public key can only be decrypted by
the party owning the private key.

The disadvantage of asymmetric algorithms is slow performance. Consequently, applications
typically use asymmetric algorithms to distribute symmetric keys, and then do their bulk
encryption using a symmetric key algorithm. So, in actuality, Alice would not encrypt her
message with Bob’s public key, but encrypt a symmetric key with the public key and send that
to Bob. Then she would encrypt her message with the symmetric key and send that as
depicted in Figure 2-1 on page 13.

Note: Certain modes of operation can turn block ciphers into stream ciphers:

� Cipher Feedback (CFB) mode
� Output Feedback (OFB) mode

"#4f$^.TY#3~|>"

"Hello Bob..."

"#4f$^.TY#3~|>"

"Hello Bob..."

BobAlice

Encrypt DecryptBob’s public key Bob’s private key
16 IBM System i Security: Protecting i5/OS Data with Encryption

Rivest, Shamir, Adleman (RSA) is an asymmetric algorithm supported by i5/OS that can be
used to encrypt and decrypt. It is named after its inventors who first published it in 1977.
Besides using RSA to encrypt keys for secure distribution, RSA can be used to encrypt
digests used in the generation of digital signatures. This is described in “Sign/verify” on
page 21.

2.1.2 Key distribution algorithms

When encrypted data must be decrypted at another location, distributing the key in a secure
manner can be a challenge. Methods of key distribution are discussed in more detail in 3.8,
“Key distribution” on page 34. The algorithms are:

� RSA

As previously discussed, RSA is a PKA algorithm. It is often used to distribute symmetric
keys. Bob generates a public/private RSA key pair and sends the public key in the clear to
Alice. Alice generates a symmetric key, encrypts it with Bob’s public key, and sends that to
Bob. Bob decrypts the symmetric key using his private key.

� Diffie-Hellman

Diffie-Hellman is a PKA algorithm invented by Whitfield Diffie and Martin Hellman in 1976
for establishing a shared secret key across an insecure communications channel. It is
described in Public Key Cryptography Standard (PKCS) #3, Diffie-Hellman Key
Agreement Standard and in RFC 2631, Diffie-Hellman Key Agreement Method, found at
the following URL:

http://www.ietf.org/rfc/rfc2631.txt

Basically, Bob generates a set of PKA parameters. These parameters are not secret and
are sent to Alice in the clear. Both Alice and Bob use the parameters to generate a
private/public key pair and send their public key to each other. Both Alice and Bob
calculate a shared secret key using their own private key and the other's public key. Note
that Diffie-Hellman cannot be used for encryption/decryption purposes.

2.1.3 One-way hash algorithms

A one-way hash algorithm produces a fixed-length output string (often called a digest) from a
variable-length input string. For all practical purposes, the following statements are true of a
good hash function:

� Collision resistant

If any portion of the data is modified, a different hash will be generated.

� One-way

The function is irreversible. That is, given a digest, it is not possible to find the data that
produces it.

i5/OS supports several hash algorithms:

� MD5

Message Digest 5 (MD5) was invented by Ron Rivest in 1991. It is described in RFC
1321, The MD5 Message-Digest Algorithm, found at the following URL:

http://www.ietf.org/rfc/rfc1321.txt

MD5 produces a 128-bit (16-byte) digest. MD5 has been widely used. However, serious
flaws have been found in the algorithm, and we no longer recommend it for use.
Chapter 2. Algorithms, operations, and System i implementations 17

http://www.ietf.org/rfc/rfc2631.txt
http://www.ietf.org/rfc/rfc1321.txt

� SHA-1

Secure Hash Algorithm 1 (SHA-1) was developed by the National Security Agency (NSA)
and is published in FIPS Pub 180-2, Secure Hash Standard, with all the other SHA
variations, at the following URL:

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

SHA-1 produces a 160-bit (20-byte) digest. The security of SHA-1 was recently
compromised. We recommend using an SHA-2 algorithm if possible.

� SHA-2

Secure Hash Algorithm 2 (SHA-2) is a set of additional SHA algorithms published by NIST
to match the higher security levels of longer keys:

– SHA-256 produces a 256-bit (32-byte) digest.
– SHA-384 produces a 384-bit (48-byte) digest.
– SHA-512 produces a 512-bit (64-byte) digest.

� MDC

Modification Detection Code (MDC) is a one-way hash invented by IBM that uses DES
encryption and a default key. MDC produces a 128-bit (16-byte) digest.

� RIPEMD-160

RACE Integrity Primitives Evaluation Message Digest (RIPEMD-160) was developed in
the European academic community. It was first published in 1996. RIPEMD-160 produces
a 160-bit (20-byte) digest.

2.1.4 Random number generation algorithms

Many security-related functions rely on random number generation.

Random number generation is performed both in i5/OS via Cryptographic Services and on
the cryptographic coprocessors via CCA. Both use a FIPS-approved pseudorandom number
generator (PRNG).

On the cryptographic coprocessor, an electronic noise source provides unpredictable input to
a random bit-value accumulator. Periodically, the hardware outputs seed to a FIPS 140-1
approved pseudorandom number generator.

The i5/OS pseudorandom number generator resides in the System i Licensed Internal Code
(LIC). It uses a PRNG algorithm from Appendix 3 of FIPS 186-2, Digital Signature Standard
(DSS), found at the following Web site:

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

Cryptographically strong pseudorandom numbers rely on good seed. The FIPS 186-1
algorithm is seeded from a system seed digest. The system automatically generates seed
using data collected from system information or by using the random number generator

Note: Random number generation functions implemented in software cannot be truly
random because the process is entirely deterministic. Hence the term pseudorandom
number generator. Usually, PRNGs are initialized with unpredictable data, called seed
data. Seed data may be supplied by a user, generated automatically from the state of the
computer, or obtained from a hardware true random number generator. Cryptographically
strong PRNGs use cryptographic functions. Along with good seed data, they produce
unpredictable and statistically random numbers.
18 IBM System i Security: Protecting i5/OS Data with Encryption

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

function on a cryptographic coprocessor if one is available. System-generated seed can
never be truly unpredictable. If a cryptographic coprocessor is not available, you should add
your own random seed (via the Add Seed for Pseudorandom Number Generator API) to the
system seed digest. This should be done as soon as possible any time the Licensed Internal
Code is installed.

2.1.5 Summary of algorithms

Figure 2-4 summarizes the System i supported cryptographic algorithms.

Figure 2-4 System i cryptographic algorithms

2.2 Cryptographic operations

The algorithms discussed in the previous section are used individually or in combination in
different cryptographic operations. We can roughly categorize cryptographic operations into
five groups: data confidentiality, authentication (including data integrity and non-repudiation),
random number generation, financial PINs, and key management.

Note: Chapter 6, “Choosing a data encryption method” on page 71, provides more
information about choosing an appropriate cipher algorithm and mode of operation.

Cipher

Algorithms

DES

TDES

AES

RC2
RC4

RSA
Diffie-Hellman

MD5 RIPEMD-160

SHA-1 MDC

SHA-256

SHA-384

SHA-512

FIPS186-2

PKA (Asymmetric)
Algorithms

Secret key
(Symmetric)

Algorithms

One-way Hash

Algorithms

Random Number Generation Algorithm

Block
Ciphers

Stream Cipher

Key Exchange

Algorithms
Chapter 2. Algorithms, operations, and System i implementations 19

2.2.1 Data confidentiality

Cryptographic operations for the purpose of data confidentiality prevent an unauthorized
person from reading a message. The following operations are included in data confidentiality.

Encrypt and decrypt
The encrypt operation changes plaintext data into ciphertext through the use of a cipher
algorithm and key. To restore the plaintext data, the decrypt operation must employ the same
algorithm and key.

Encryption and decryption may be employed at any level of the operating system. Basically,
there are three levels:

� Link level encryption

Link level encryption is performed at the lowest level of the protocol stack, usually by
specialized hardware.

� Session level encryption

With encryption at the session layer, the system requests cryptographic services instead
of an application. The application may or may not be aware that encryption is happening.

� Field level encryption

With field level encryption, the user application explicitly requests cryptographic services.
The user application completely controls key generation, selection, distribution, and what
data to encrypt.

Translate
The translate operation decrypts data from encryption under one key and encrypts the data
under another key. This is done in one step to avoid exposing the plaintext data within the
application program.

2.2.2 Data authentication, integrity, and non-repudiation

Encrypted data does not mean that the data cannot be manipulated (for example, repeated,
deleted, or even altered). To rely on data, you need to know that it comes from an authorized
source and is unchanged. Additional cryptographic operations are required for these
purposes.

Hash (or message digest)
Hash operations are useful for authentication purposes. For example, you can keep a copy of
a digest for the purpose of comparing it with a newly generated digest at a later date. If the
digests are identical, the data has not been altered.

Message authentication code (MAC)
A MAC operation uses a secret key and symmetric cipher algorithm. The input data is
encrypted using CBC mode. But instead of returning the entire ciphertext, it returns the last
block of encrypted data. This value is called a MAC and is used to ensure that the data has
not been modified. Typically, a MAC is appended to the end of a message. The receiver of
the message uses the same MAC key and algorithm to reproduce the MAC. If the receiver's
MAC matches the MAC kept with the message, the data has not been altered.

Note: This book deals with field level encryption.
20 IBM System i Security: Protecting i5/OS Data with Encryption

The MAC operation helps authenticate messages, but does not prevent unauthorized reading
because the data remains as plaintext. You must use the MAC operation and then encrypt
the entire message to ensure both data privacy and integrity.

HMAC (hash MAC)
An HMAC, or keyed hash, operation uses a cryptographic hash function and a shared secret
key to produce an authentication value. It is used in the same way in which a MAC is used.
Because hash algorithms are faster than symmetric ciphers, producing a MAC via an HMAC
operation will perform better than producing a MAC via a symmetric cipher.

Sign/verify
A sign operation produces an authentication value called a digital signature. A sign operation
works as follows:

1. The data to be signed is hashed to produce a digest.

2. The digest is encrypted using a PKA algorithm such as RSA and a private key, to produce
the signature.

The verify operation works as follows:

1. The signature is decrypted using the sender's PKA public key to produce digest 1.
2. The sender’s data is hashed to produce digest 2.
3. If the two digests are equal, the signature is valid.

Theoretically, this also verifies the sender because only the sender should posses the private
key. However, how can the receiver verify that the public key actually belongs to the sender?
Certificates are used to help solve this problem.

2.2.3 Key and random number generation

Many security-related functions rely on random number generation, for example, salting a
password or generating an initialization vector. An important use of random numbers is in the
generation of cryptographic key material. Key generation has been described as the most
sensitive of all computer security functions. If the random numbers are not cryptographically
strong, the function will be subject to attack.

2.2.4 Financial PINs

Although not covered in this book, personal identification number (PIN) generation and
handling are also considered cryptographic operations.

A PIN is a unique number assigned to an individual by an organization. PINs are commonly
assigned to customers by financial institutions. The PIN is typed in at a keypad and compared
with other customer-associated data to provide proof of identity.

To generate a PIN, customer validation data is encrypted with a PIN key. Other processing is
done on the PIN as well, such as putting it in a particular format.

The cryptographic coprocessors provide a complete set of financial PIN operations.
Cryptographic Services does not support any type of PIN operation.
Chapter 2. Algorithms, operations, and System i implementations 21

2.2.5 Key management

Key management is the secure generation, handling, and storage of cryptographic keys. This
includes key storage and retrieval, key encryption and conversions, and key distribution. Key
management is discussed in more detail in Chapter 3, “Key management concepts” on
page 25.

2.3 System i cryptographic implementations overview

This section provides an overview how cryptographic functions are implemented on System i.

2.3.1 Cryptographic service providers

System i supports several cryptographic service providers (CSPs). A CSP is the software or
hardware that implements a set of cryptographic algorithms and operations.

� 4758/4764 Cryptographic Coprocessors

IBM 4764 Cryptographic Coprocessor is available on System i5™ and eServer™ i5
models as hardware feature code 4806. IBM 4758 Cryptographic Coprocessor is no
longer available, but is still supported.

The coprocessors were designed to meet Federal Information Processing Standard
(FIPS) PUB 140 level 4 security requirements. Information about FIPS 140 can be found
at the following Web site:

http://csrc.nist.gov/cryptval/cmvp.htm

The Cryptographic Coprocessors contain a tamper-responding hardware security module
(HSM) encapsulating a general-purpose processor, specialized cryptographic electronics,
and non-volatile key storage. The coprocessors support an access-control system that is
separate from i5/OS access controls.

More information about the Cryptographic Coprocessors can be found in the i5/OS
Information Center, Version 5 Release 4, at the following URL:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm

� 2058 Cryptographic Accelerator

The 2058 Cryptographic Accelerator is no longer available, but is still supported. The
Cryptographic Accelerator was designed to improve the performance of SSL for those
applications that do not require hardware-secured key storage. In addition, it can be used
by Cryptographic Services APIs to offload processing. More information about the 2058
Cryptographic Accelerator can be found in the i5/OS Information Center, Version 5
Release 4, at the following URL:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcaccel2058
.htm

� i5/OS LIC

A number of cryptographic algorithms are implemented within i5/OS Licensed Internal
Code. These algorithms are used by many system functions and are available for
application use through the Cryptographic Services API set.

� Java™ Cryptography Extensions

Java Cryptography Extension (JCE) provides a framework and implementations for
encryption, key generation and key agreement, and Message Authentication Code
algorithms. JCE is a standard extension to the Java 2 Software Development Kit (J2SDK),
22 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcaccel2058.htm
http://csrc.nist.gov/cryptval/cmvp.htm

Standard Edition. More information about IBM JCE can be found in the i5/OS Information
Center, Version 5 Release 4, at the following Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzaha/rzahajce.htm

2.3.2 Cryptographic interfaces

The following cryptographic API sets are available to System i applications for encrypting
data at rest. Although this book only discusses the first three options, JCE is included for
completeness.

� CCA

The Common Cryptographic Architecture (CCA) API set is provided for running
cryptographic operations on a Cryptographic Coprocessor. The CCA and cryptographic
coprocessors are used by System i for a number of purposes:

– By applications for general-purpose cryptographic operations.

– By applications for financial operations, such as PIN transactions,
bank-to-clearing-house transactions, Europay, MasterCard, VISA (EMV) transactions
for integrated circuit (chip) based credit cards, and basic Secure Electronic Transaction
(SET) block processing.

– By SSL to offload intense cryptographic processing.

– By Digital Certificate Manager (DCM) to generate and securely store RSA keys,
including private keys for SSL certificates.

– By the system pseudorandom number generator to obtain real random data for seed.

The CCA API set is described at the following Web site:

http://www-03.ibm.com/security/cryptocards/library.shtml

� i5/OS Cryptographic Services

The i5/OS Cryptographic Services API set is provided for running general-purpose
cryptographic operations within the Licensed Internal Code or optionally on the 2058
Cryptographic Accelerator. The APIs are documented in the i5/OS Information Center,
Version 5 Release 4, at the following URL:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm

� SQL

Structured Query Language (SQL) supports encryption/decryption of database fields. The
SQL built-ins for encrypting and decrypting DB2® data are described in the i5/OS
Information Center, Version 5 Release 4, at the following URL:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/db2/rbafzmstch2func
.htm

� Java Cryptography

The JCE implementation on System i is compatible with the implementation of Sun™
Microsystems, Inc., documented at the following URL:

http://java.sun.com/products/jce/index.jsp

Refer to 6.2, “Choosing an interface” on page 73, for a comparison of these interfaces.
Chapter 2. Algorithms, operations, and System i implementations 23

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzaha/rzahajce.htm
http://java.sun.com/products/jce/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/catcrypt.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/db2/rbafzmstch2func.htm
http://www-03.ibm.com/security/cryptocards/library.shtml

Table 2-1 indicates what CSP is used under each interface.

Table 2-1 System i cryptographic service providers and interfaces

Figure 2-5 depicts the System i implementation of cryptographic interfaces and service
providers.

Figure 2-5 System i cryptographic implementation

APIs/CSPs i5/OS LIC 4764/4758 2058 JCE

CCA X

Cryptographic Services X X

SQL X

Java Cryptography X

4764/4758
Coprocessor

Application Application Application Application

SQL Built-in

CCACryptographic Services

MI Crypto MI Instructions

Keystore Keystore

JCE

LIC Crypto
Services

LIC Common Crypto Interface

2058
Accelerator

MK
store

Keystore

MK
store
24 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 3. Key management concepts

How secure is your encrypted data? It depends on the security of your keys. The security of
your keys depends on many factors, such as how you generate keys, store keys, authorize
keys, distribute keys, and destroy keys.

3

© Copyright IBM Corp. 2008. All rights reserved. 25

3.1 Key management considerations

An encryption algorithm requires a key to transform the data. All cryptographic algorithms, at
least the reputable ones, are in the public domain. Therefore, it is the key that controls access
to the data. We cannot emphasize enough that you must safeguard the key to protect the
data.

All of the following affect the security of your keys and therefore your encrypted data:

� The type and size of key
� How the keys are generated
� Where the keys are stored
� Access to keys
� How applications handle keys
� Key distribution
� If and how keys are backed up
� When keys are destroyed

3.2 Size matters

An obvious technique for hacking data encrypted with a symmetric key is an exhaustive
search of all possible key values. Therefore, the larger you make your key size, the more
prohibitive the search becomes.

We discuss key size, or the strength of keys, in terms of number of bits. However, on some
interfaces you may be required to specify the key size in bytes, not bits. For example, to
specify a 256-bit key size, you may be required to specify 32 bytes.

Deciding on a key size is an important decision. While a larger key size better protects the
data, it can also decrease performance. Other factors to consider when deciding on a key
size are:

� What key sizes are supported by the algorithm that you want to use?

Some algorithms only support a few key sizes. Others support a large range of key sizes.
Table 3-1 lists i5/OS-supported key sizes.

Table 3-1 i5/OS V5R4 supported key sizes

Cryptographic
Services

Cryptographic
Coprocessors

SQL built-in
function

DESa

a. DES keys are always 8 bytes in length. So why is the key size not 64? One bit of each byte
is sometimes used for parity and is not actually involved in the encryption algorithm.
Therefore, the strength of the key is actually 56.

56 56 -b

Triple DESc 56, 112, 168 56, 112, (168)d 112

AES 128, 192, 256 - -

RC2 8–1024e - 128

RC4-compatible 8– 2048f - -

RSA 512–2048g 1024, 1280, 1536,
1792, 2048

-

Diffie-Hellman 512–1024h - -
26 IBM System i Security: Protecting i5/OS Data with Encryption

� What is your desired minimum security level?

By security level, we mean the number of steps that it takes to mount a successful attack.
For example, in the case of an exhaustive search on a 56-bit value, the number of steps is
two56.

All your cryptographic operations should be designed to meet the security level that you
establish. It does not make sense to encrypt data using a 256-bit key, and then encrypt
the data-encrypting key under a 128-bit key.

Because many encryption modes are susceptible to collision attacks, for a security level of
n bits, you should use a key at least 2n bits. For example, for 128-bit security, you should
use a 256-bit key.

� How long will the encrypted data be around?

This is an important consideration because the capabilities for exhaustive attacks in the
future will be significantly better than today. If you plan to encrypt and store data for a long
period of time (without translating at a future date) you need to choose a large key size.
Cryptographic experts argue that systems today should aim at securing data for 30 to 50
years. That requires designing a system with a 128-bit security level.

Comparing the strength of keys can be tricky. While you can compare the number of bits for
various symmetric keys (for example, triple DES, AES, RC2, RC4), you cannot compare
number of bits between symmetric and asymmetric keys. In fact, you cannot always compare
number of bits between various PKA algorithms.

Table 3-2 shows the PKA modulus sizes recommended by NIST for the RSA and
Diffie-Hellman algorithms to meet various security levels.1

Table 3-2 NIST recommendations for PKA key strength

The cryptographic service providers for i5/OS do not support the larger PKA key sizes. (The
performance for large RSA keys is prohibitive.) Hopefully, in the future i5/OS will support

b. “-” indicates that the algorithm is not supported.
c. Like DES, one bit from each byte of a triple DES key is used for parity.
d. CCA uses 168-bit triple DES keys for master keys only.
e. Key size must be a multiple of 8.
f. Key size must be a multiple of 8.
g. The key size must be an even number.
h. The key size must be a multiple of 64.

Note: A modulus is the product of two large primes used in modulo operations by the PKA
algorithm. The security of the algorithm depends on the difficulty of factoring the modulus.
Consequently, increasing the modulus size increases the security, but it also becomes
much more CPU intensive.

For security level Use PKA modulus

80 1024

112 2048

128 3072

192 7680

256 15360
Chapter 3. Key management concepts 27

newer and stronger PKA technologies, such as Eliptic Curve Cryptography (ECC). Until then,
you should use at least a 2,048-bit PKA key size.

3.3 Establishing a key value

When you establish a key on i5/OS, you will either receive the key value from another party,
or generate one yourself.

3.3.1 Generating a key value

A large key size does no good if someone can easily guess the key value. For example, you
should not use words for a key value. A program can quickly do an exhaustive search of all
words in a dictionary. Using words for a key value provides very little unpredictable data, or
entropy.

Sometimes words are used to set a key by entering a password or passphrase that is then
hashed to the appropriate key size by the system (such as with the Set Encryption Password
SQL function). In these situations, a large amount of character data must be entered to obtain
good entropy. A good rule of thumb is to assume that your passphrase is only providing
1–2 bits of entropy per byte. So, for example, if you plan to use a 128-bit key you want 128
bits of entropy, and therefore it would be best to enter a passphrase containing 128
characters.

To generate a random key value, and therefore maximum entropy, use a key generation
function or a cryptographically strong random or pseudorandom number generator.

When you establish important keys, such as master keys, it is a good idea to separate the key
into parts so that no one person knows the key value. Full-function cryptographic service
providers (CSPs) provide a means of multi-part master key establishment. However, to do so
for other keys, you may need to write a program that first collects the key parts and then uses
the CSP interfaces to establish the key.

3.3.2 Using a known key value

Sometimes you will be given a key value. For example, you may be using a key distribution
protocol and the key arrives at your system encrypted with another key. Most likely, you will
want to add this key into your keystore. A key import operation is used to accomplish this. A
key import operation translates the key by decrypting it from the key-encrypting key and
encrypting it under the master key. It then optionally stores the key in keystore. This operation
is done without ever exposing the key in cleartext within your application. This should be a
goal in your key management, to reduce exposure of clear key values as much as possible.

1 SP 800-57 Part 1, Recommendation for Key Management - Part 1: General (Revised), found at:
http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1_3-8-07.pdf
28 IBM System i Security: Protecting i5/OS Data with Encryption

http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1_3-8-07.pdf

3.4 Storing keys

There are many places keys can reside—some transient, some permanent. Basically, keys
can be stored wherever data can be stored:

� As a program constant

Hard coding a key value, password, passphrase, or any other sensitive information for that
matter, is strongly discouraged. There are many reasons why this is a bad idea. If you are
going to hard code your key values, stop reading right now. There is no point.

� In a program variable

Within your application, key values should always be handled in variables. Ideally, the key
value in the variable should be encrypted. That way, if the program is viewed while running
(for example, it takes a dump), there is less chance that the key value will be exposed.

� Offline

– On non-digital media

One way of protecting a key value is to not store it digitally at all. Instead, the user
enters the key whenever it is needed. Of course, the drawback in this scenario is the
interactive requirement.

Also, it does not mean that there are no security issues to address. Is the key written
down, and is that stored securely? Whether it resides on paper or in someone’s head,
is there a backup? How will the key be entered? Is the setting secure? Can anyone
view the typing? Is the application set up so that the value does not appear in the
window or in the joblog?

One common method of entering a key is to use a passphrase and then apply some
cryptographic functions to create a key value, such as with the RSA Data Security, Inc.,
Public-Key Cryptography Standard (PKCS) #5 algorithm. As discussed above, you
need to ensure that enough characters are entered to obtain sufficient entropy.

– On digital media

Keys used to encrypt data are often stored with the data itself so that they cannot be
misplaced. However, the key should not be stored in the clear. The key must be
encrypted with at least the same level of security as the data.

� In an i5/OS object

We have two recommendations for securing keys stored in an i5/OS object, such as in a
file or data area:

– Encrypt the key values.

If your object is saved to media, you do not want those keys exposed. Secondly, it
provides another layer of defense while the object is on your system. If an unauthorized
user gets access to the object, this person will not be able to see the key values.

Of course, the question now becomes how to store and manage the key that encrypts
the key values. This issue will be discussed in more detail in 3.5.1, “Key hierarchy” on
page 30.

– Lock down access to the object.

Even though the key values in your object may be encrypted, a user may have access
to the decryption function and the key-encrypting key.

� In an i5/OS-provided keystore

This book discusses two i5/OS-provided keystores:

– CCA keystore for use with the cryptographic coprocessors via the CCA APIs
Chapter 3. Key management concepts 29

– Cryptographic Services keystore for use with the Cryptographic Services set of APIs

Both keystores comprise a set of database files. All key values within the keystore files are
stored encrypted with a master key.

It is important to secure i5/OS objects that contain keys, including the provided keystores.
Refer to 5.4, “Establishing a secure keystore environment” on page 65, for a detailed
discussion.

3.5 Key separation

An important aspect of key management is good key separation. Keys should be separated
by the data they act on (keys or data), by key use (encrypting, decrypting, message
authenticating, signing, and so on), by authorities, and by key management responsibilities.

3.5.1 Key hierarchy

Besides encrypting data, keys are used to encrypt other keys. All keys should be stored
encrypted. Keys should always be transmitted encrypted, and applications should handle
encrypted keys as much as possible.

Figure 3-1 depicts a hierarchical key system, a commonly used key management technique.
A key hierarchy is a popular mechanism for protecting keys primarily because it reduces the
number of secrets that are in the clear.

Figure 3-1 Key hierarchy

At the top of the hierarchy is a master key (or keys). The master key is the only clear key
value and must be stored securely. CCA stores master keys in tamper-responding hardware.
Cryptographic Services stores master keys in a protected area of the Licensed Internal Code
(LIC). If you are managing your own keystore, you need to decide how to securely store a
master key. One method is to enter it into the system whenever a key needs to be decrypted,
as discussed in 3.4, “Storing keys” on page 29. Or you could use a Cryptographic Services
key to encrypt keys in your keystore.

Encrypts

Master Key

Data-encrypting Key

Data-encrypting Key

Key-encrypting Key

Data-encrypting Key

Data-encrypting Key

Data-encrypting Key

Data-encrypting Key

Key-encrypting Key

Encrypts

Encrypts
30 IBM System i Security: Protecting i5/OS Data with Encryption

Use key-encrypting keys (KEKs) to encrypt other keys. KEKs are usually stored encrypted
under a master key.

Data keys are used directly on user data (for example, to encrypt or sign data). You can
encrypt a data key under a KEK or under a master key. When data keys are stored in
keystore, they are encrypted under a master key. When a data key is sent to another system
or stored with the data that it encrypts, it is usually encrypted under a KEK.

3.5.2 Key use

Keys for different purposes should be separated cryptographically. For example, if an
application only needs to encrypt, the key should be limited to encryption only. This is
accomplished with the use of control vectors.

A control vector is a non-secret value that is exclusive-ORed with a master key or a KEK
before using that master key or KEK to encrypt or decrypt another key, as shown in
Figure 3-2.

Figure 3-2 Using a control vector

The control vector carries information about how the key can be used. Because the control
vector is used in the encryption of the key, it permanently binds that information to the key. In
this way the control vector restricts the use of the key to certain operations. The control vector
must remain with the key and is supplied on the cryptographic operation.

A control vector prevents unauthorized use of the key in two ways:

� If an attempt is made to use a key on an unauthorized operation, the operation will detect
that the supplied control vector disallows the request and will terminate the operation.

� If the control vector is altered so that the operation allows the request, the key will decrypt
incorrectly, causing bad results.

master key or KEKcontrol vector

XOR

key variant

encrypt

key to encrypt

encrypted key
Chapter 3. Key management concepts 31

CCA supports a very comprehensive control vector, encompassing over 50 types of key
usage. A CCA control vector can be applied to a key encrypted with a master key or
encrypted with a KEK.

Cryptographic Services supports a much simpler control vector. A Cryptographic Services
control vector allows you to prevent a key from encrypting, decrypting, message
authenticating, signing, or any combination of these four functions. A Cryptographic Services
control vector can only be applied to a key encrypted with a master key.

3.5.3 Keystore authorization

A further means of separating keys is to place them in different keystore objects and limit the
authorizations placed on those objects. This is important because a user profile that has
authority to a keystore in which it only uses a single key, will have access to all the keys.
Refer to 5.4, “Establishing a secure keystore environment” on page 65, for a detailed
discussion on securing keystores.

3.5.4 Key management responsibilities

No single person should have responsibility for all key management operations. As part of
your key management planning, decide who will be responsible for what operations. Consider
the following:

� Who will set your master keys?

As discussed above, no one person should know the value of, or be able to reproduce, a
master key. Master key parts should be assigned to separate individuals.

� Who is responsible for translating keys when a master key is changed?

The system does not keep track of your keystore files. You must know what files need to
be translated when a master key is changed. It is not a good idea to give one person
authority to all keystore files.

� Who will change keys, as outlined in 3.7, “Changing keys” on page 33, and do any
necessary translations?

� Who is responsible for checking for unauthorized changes?

Audit records are cut for master key operations so that you can track when master keys
are altered. Also, someone could check the key verification value (KVV) of master keys to
determine whether master keys have changed. For more information about master key
KVVs, refer to “Clear Master Key” on page 50.

� Who is responsible for backing up master keys and keystore files?

3.6 Backing up keys

It is essential to keep a current backup of all keys.

How you back up your master keys is dependent on where your master keys are stored.
Refer to Chapter 5, “Managing keys on System i” on page 47, for specifics on backing up your
master keys.

CCA and Cryptographic Services keystore files can be saved with the SAVOBJ or SAVLIB
commands.
32 IBM System i Security: Protecting i5/OS Data with Encryption

Anytime a new key is added to a keystore file, you should make a backup of the file.

Anytime you change a master key, it should be backed up. In addition, keys encrypted under
that master key must be translated and backed up.

Do not forget about keys stored outside of keystore. These should be backed up as well.
Generally, these should not be encrypted under a master key. If you store a key outside of
keystore, it is best to encrypt it under a KEK. If you encrypt it under a master key and that
master key is changed, you must remember to translate and back up the key.

3.7 Changing keys

How often you change cryptographic keys is another important consideration in your key
management strategy. A number of factors affect the cryptoperiod, or life-span, of a key:

� Strength of the cryptographic algorithm

For example, if you currently have data encrypted under a DES (56-bit) key, you should
consider translating the data under another algorithm that supports a larger key size.

� Operating environment

If you do not have a secure environment for creating new keys and performing
translations, it may be better to leave the key as is.

� Frequency or amount of data acted upon

If a key is used infrequently on a small amount of data, it need not be changed as often as
a key that is used frequently or on large amounts of data.

� Sensitivity of the data

What are the consequences of exposure? The greater the consequences, the shorter you
should make the cryptoperiod.

� Cost of translation

Generally, the cryptoperiod is longer for keys that encrypt stored data than for keys that
encrypt communications exchanges. In some cases, replacing a key and forcing the
translation of a large amount of data is too costly.

� Cryptographic operation

How is the key used? A key used for encryption-only can be changed frequently. On the
other hand, a key used for decryption of stored data may need a much longer
cryptoperiod, depending on the life span of the encrypted data.

� Possible key compromise

If there is a possibility that a key is compromised, the key should be changed immediately.
For example, someone with knowledge of a master key part who leaves the company is
an exposure to the master key.

In general, a shorter cryptoperiod increases the security of the encrypted data.

The following is a simplified version of the general recommendations for cryptoperiods by
NIST.2 These recommendations should be evaluated in light of the risk factors listed above:

� Master keys

Master keys should be changed at least once a year.

2 See SP 800-57 Part 1, Recommendation for Key Management - Part 1: General (Revised), found at
http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1_3-8-07.pdf for a more detailed discussion.
Chapter 3. Key management concepts 33

http://csrc.nist.gov/CryptoToolkit/kms/SP800-57Part1_3-8-07.pdf

� KEKs

For encryption of a large number of keys over a short period of time, ideally, the
cryptoperiod should be between one day and one week. For encryption of a smaller
number of keys, the cryptoperiod may be as long as a month.

For decryption, the cryptoperiod can be significantly longer.

� Symmetric data-encryption keys

For encryption of a large amount of data over a short period of time, ideally, the
cryptoperiod should be between one day and one week. For encryption of smaller
amounts of data, the cryptoperiod may be as long as a month.

For decryption, especially of stored data, the cryptoperiod can be significantly longer.

� All other keys

For all other keys, the cryptoperiod can be from one to two years.

3.8 Key distribution

There are several alternatives for distributing a key (or password/passphrase) securely:

� Deliver the key via a secure physical channel.

For example, exchange a key face to face, or use a bonded courier.

� Send the key over a secure session, such as SSL with client authentication.

SSL with client authentication authenticates both parties. In addition, when the key is sent,
it will be encrypted automatically.

� Encrypt the key yourself to send over an insecure channel.

RSA, a PKA algorithm, is often used to encrypt key values. The public key can be sent in
the clear and the recipient can then use it to encrypt a symmetric key. The encrypted
symmetric key can only be decrypted by the party who possesses the private key.

� Use Diffie-Hellman to jointly establish a key.

Diffie-Hellman is also a PKA algorithm, but it is not used to encrypt a key like RSA. It is
used to jointly establish a key. Basically, someone generates a set of PKA parameters.
These parameters are not secret and are distributed in the clear. Each party uses the
parameters to generate a private/public key pair. Both parties calculate the shared secret
key using their own private key and the other party's public key.

� Move the i5/OS object containing the encrypted key.

If you are sending your key to another i5/OS, and your key is stored (presumably
encrypted) in an i5/OS object, such as a Cryptographic Services keystore file, then you
can simply move your object to the other system via i5/OS’s save/restore functions. Of
course, whatever key (KEK or master key) your key is encrypted under, that must be on
the target system as well.

Which key distribution method should you use? It depends on your particular situation. Be
aware that the third and fourth options by themselves do not provide any sort of
authentication. Getting authentication correct when developing a key exchange protocol is
tricky and extremely important. Done right, it can be more secure than the other alternatives.
Designing a secure key exchange protocol is beyond the scope of this book.

Using a secure authenticating protocol, like SSL with client authentication, is the easiest
method for securely exchanging a key value because the protocol authenticates the
34 IBM System i Security: Protecting i5/OS Data with Encryption

communicating parties for you. Be aware, however, that just because you use SSL, it does
not mean that your key is secure. Consider the following:

� SSL security relies on the authentication of certificates. Many SSL clients (in particular,
most Web browsers) are too permissive, having too many trusted root certificates and
accepting almost any certificate they receive.

� Even though SSL encrypts all data sent over the session, it is still a good idea for you to
encrypt the key being exchanged. That way you can avoid exposing the clear key value as
it travels through the system. For example, if the key that you wish to distribute resides in
a keystore file, perform an export operation to translate the key under a KEK, such as an
RSA public key, and then send it via SSL.

Another option is to use Diffie-Hellman over SSL.

� You should verify the key value before it is used. Just because the session is
authenticated and the key is encrypted does not mean that it cannot be altered in transit.

3.9 Key destruction

All unnecessary key material should be destroyed when no longer needed. This applies to
both permanent and temporary storage of keys, as discussed in 3.4, “Storing keys” on
page 29. For example, if your application holds a key value in a variable, that variable should
be cleared as soon as you are done with it. Or a key that has been distributed to another
system and is no longer needed on the source system should be deleted or changed.

You should track carefully what keys are used for what data so that you do not delete a key
prematurely. If unsure, do not delete the key. If you loose a key and have no backup, all data
and keys encrypted under that key will be lost.
Chapter 3. Key management concepts 35

36 IBM System i Security: Protecting i5/OS Data with Encryption

Part 2 Planning for data
encryption

This part provides critical information for planning a data encryption project on i5/OS.

Part 2
© Copyright IBM Corp. 2008. All rights reserved. 37

38 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 4. Analyzing needs and defining
scope

Encryption is not a task that should be taken on lightly, and deciding what and how to encrypt
your data, not to mention why, are items that need to be carefully considered.

Not unlike any development project, the evaluation of encryption technology needs to
progress through defining a need and evaluating the impact and associated costs to
complete.

This chapter first introduces some of the common legislation pertaining to data security, and
then outlines some topics for evaluating how encryption can be deployed in your
organization.

4

© Copyright IBM Corp. 2008. All rights reserved. 39

4.1 Needs analysis

The fact that you are reading this book indicates you already are aware, or at least suspect,
that you have a requirement for encrypting data. Before you embark on your project, the
requirements must be fully understood. Not only will they affect what and how you encrypt,
but many other security decisions need to be made as well. For example, do you need to
protect data from users who have access to the system? If you use the Cryptographic
Services APIs, but everyone has All Object (*ALLOBJ) special authority, you gain no
protection while that data resides on the system. Someone with *ALLOBJ authority has
access to the APIs and keys needed to decrypt the data. However, if you only care about
protecting data outside the perimeter of your system security, for example, saving the
encrypted data to tape, it will be protected by those who do not have access to the system.

As discussed in 1.1.2, “What drives the requirement” on page 4, there are three main
requirements that lead to encryption: government legislation, industry rules, and business
requirements.

Regulations and standards
This section briefly outlines some of the most notable compliance requirements—both
government and industry—pushing organizations to analyze their security infrastructure.

For a more in-depth review of regulations and standards, refer to the Redbooks publication
IBM System i Security Guide for IBM i5/OS Version 5 Release 4, SG24-6668.

Sarbanes-Oxley (SOX) Section 404
The Sarbanes-Oxley act (also known as SOX and Sarbox) was signed into effect July 30,
2002, after a series of corporate financial scandals. It places stringent financial reporting
requirements on publicly traded companies doing business within the U.S. Section 404
concerns assessment of internal controls.

Encrypting and authenticating data can fulfill some of the accountability requirements of this
law.

For more information about SOX, see the Securities & Exchange Commission Web site:

http://www.sec.gov/spotlight/sarbanes-oxley.htm

Also see the Sarbanes-Oxley Web site:

http://www.sarbanes-oxley.com

Gramm-Leach-Bliley Act (GLBA)
The GLB Act was passed in 1999 to repeal a previous U.S. Congressional Act that prevented
banks from offering investment and insurance services. This opened the way for mergers of
corporations operating in these sectors, most notably the Travellers Insurance buyout of
Citibank to form CitiGroup.

The Act also defines several rules that control how institutions maintain the private
information of individuals, including disclosure of how that information is shared, the
protection of any stored information, and the prevention of data access by false pretenses.
40 IBM System i Security: Protecting i5/OS Data with Encryption

Section 6801 (Protection of non-public personal information) of the Act (also known as the
Safeguards Rule) requires that financial institutions develop and maintain a written security
policy regarding how they are protecting clients’ private information. According to the U.S.
Federal Trade Commission, this policy should be designed:

� To insure the security and confidentiality of customer records and information

� To protect against any anticipated threats or hazards to the security or integrity of such
records

� To protect against unauthorized access to or use of such records or information that could
result in substantial harm or inconvenience to any customer

For more information, refer to the U.S. Federal Trade Commission (FTC) Web site:

http://www.ftc.gov/privacy/privacyinitiatives/blbact.html

Healthcare Insurance Portability and Accountability Act (HIPAA)
Enacted by the U.S. Congress in 1996, HIPAA is designed to protect workers’ right to health
insurance when they change or lose their job, as well as to establish national standards
related to the security and privacy of health-related information.

Title II of the Act covers the requirements regarding security and privacy. The Security Rule
has multiple elements that pertain to computer systems including administrative safeguards,
physical safeguards, and technical safeguards. The technical safeguards dictate that the
transmission of Protected Health Information (PHI) across open networks must be encrypted,
while encryption of data on closed systems is currently optional.

For more information about HIPAA, refer to the U.S. Department of Health & Human Services
Web site:

http://www.hhs.gov/ocr/hipaa/

Payment Card Industry (PCI) Security Standards
The Payment Card Industry was established by the four major credit card corporations
(American Express, VISA, MasterCard, and Discover) in response to breaches of personal
information leading to increased incidences of identity theft.

The purpose of the standards is to provide consumers with reassurance that their personal
details are safe when provided to a participating company or merchant. This includes the
requirement that credit card information be encrypted and the ban on retention of certain
card-related details (for example, CVV security code).

Table 4-1 is from the PCI data security standards (DSS) guidelines v.1.1, published in
September 2006. The PCI DSS standard only apples if a primary account number (PAN) is
stored, processed, or transmitted.

Table 4-1 PCI DSS requirements

Data element Storage
permitted

Protection
required

PCI DSS req. 3.4

Cardholder
data

Primary account
number (PAN)

Yes Yes Yes

Cardholder
name*

Yes Yes* No

Service code* Yes Yes* No

Expiration date* Yes Yes* No
Chapter 4. Analyzing needs and defining scope 41

http://www.ftc.gov/privacy/privacyinitiatives/blbact.html
http://www.hhs.gov/ocr/hipaa/

* These data elements must be protected if stored in conjunction with the PAN. This protection
must be consistent with PCI DSS requirements for general protection of the cardholder
environment. Additionally, other legislation may require protection of this data.

** Sensitive authentication data must not be stored subsequent to authorization (even if
encrypted).

Compliance requirements vary between card networks, as each brand has its own format, as
follows:

� American Express - Data Security Operating Policy (DSOP)
� MasterCard - MasterCard Site Data Protection (SDP)
� VISA - Cardholder Information Security Protection (CISP)
� Discover - Discover Information Security and Compliance (DISC)

Each brand also defines the requirements for four levels of merchants, based primarily on the
number of annual transactions and the compromise history. The penalty for non-compliance
may include increased processing fees, loss of ability to accept payments, and, in the case of
serious data breaches, fines of up to $500,000. In December 2006, VISA announced that
they were offering $20 million in incentives to those merchants demonstrating compliance in
order to accelerate progress.

For more information about PCI Security, visit the PCI Security Standards Council Web site:

http://pcisecuritystandards.org

Notice of Breach (California Senate Bill 1386)
Passed in 2003 after a data breach of California’s state payroll database, SB-1386 requires
that any organization (business or government) that maintains a database of personal
information (as defined by the Bill) on a customer or employee that resides in California be
required to notify individuals in a timely manner if that data is compromised.

In essence, personal information is defined as the storage of first name (or initial) and last
name in combination with uniquely identifying information such as Social Security number or
drivers licence number.

The bill had far-reaching effects as other U.S. states reacted upon the realization that
unauthorized disclosure of private information about their own state residents could legally go
unreported.

Significant to the discussion in this Redbooks publication, the SB-1386 disclosure
requirement is limited to compromised data that is not encrypted with at least 128-bit
encryption. For more information, refer to the California State Senate Web site:

http://www.info.sen.ca/gov/cgi-bin/postquery?bill_number=sb_1386&sess=PREV&house=B
&site=sen

Sensitive
authentication

data**

Full magnetic
stripe

No N/A N/A

CVC2/CVV2/CID No N/A N/A

PIN/PIN block No N/A N/A

Data element Storage
permitted

Protection
required

PCI DSS req. 3.4
42 IBM System i Security: Protecting i5/OS Data with Encryption

North American Electric Reliability Council Cyber Security Standards
NERC acts as an intermediary to coordinate cooperation between the electric industry and
the U.S. federal government. Its main function is to develop protection for the U.S. electric
system from both physical and cyber attacks by working with the various agencies including
the U.S. Department of Energy and U.S. Department of Homeland Security.

NERC adopted its current Cyber Security standards in 2006, which are designed to protect
critical data exchanges. The standard is one of several designed to establish best practices.
For more information, refer to the NERC Web site:

http://www.nerc.com

UK Data Protection Act for UK and European companies
The Data Protection Act of 1984 (and subsequently 1998) pertains to storage and use of
personal identification information of any living UK resident.

Although there are some exceptions, data may not be used outside of the purpose for which it
was collected, and may not be disclosed without the consent of the owner of the information.
The information in the data must be current, accurate, and retained only as long as the data is
required. The act also enables an individual to pay a nominal fee to review the data that is
recorded about them, and request corrections to inaccuracies.

As with most legislative requirements, any personal data must be stored securely, although
the requirement to encrypt data is not spelled out.

Failure to abide by the provisions in the act can result in financial penalties as well as the
requirement to destroy the information.

For the full text of the 1998 revision of the DPA, refer to the Office of Public Sector
Information Web site:

http://opsi.gov.uk/acts1998/19980029.htm

4.2 Defining the scope

If your interest in encryption is compliance-driven, then start scoping your encryption project
requirements specifically around the data impacted by the compliance regulations.

If not spelled out by compliance, evaluate your data based on whether it would cause harm or
embarrassment to the organization if it were published in a forum, such as a public Internet
site or trade magazine.

You should keep in mind that unauthorized access to even unimportant corporate data would
likely bring into question the security of the entire database, so good general security
practices are mandatory.

4.2.1 What data to protect

Your analysis includes assessing what data should be encrypted.
Chapter 4. Analyzing needs and defining scope 43

First, the feasibility of encrypting all data in the database is going to depend on several
factors:

� Performance

Performing any cryptographic function is going to add an overhead to your processes.
Regardless of whether you make application modifications or use database file triggers,
the more information that you have to encrypt (and subsequently decrypt), the more
overhead you add. Focussing only on the data that is deemed as truly confidential
minimizes the impact.

� Scope

Your application is likely going to require changes to perform the cryptographic functions.
Although it is possible to do this via triggers, restricting the files and fields to be processed
to the critical ones reduces the number of modifications or triggers that need to be written.
In other words, simply reading/writing encrypted data (that is, not decrypting it) does not
add more cycles than are required for plaintext information. But the more fields you
encrypt, the more likely the requirement to decrypt it, and therefore the requirement to
write the code to perform the decryption.

� Security

Encrypting low-risk information can potentially reduce the added security afforded by
encryption. For example, if an address in a customer file is encrypted, but that information
is readily available in plaintext somewhere else in the database, then you have provided a
link that could lead to your entire encryption being compromised. This would also leave
your high-risk information vulnerable.

In addition, much of the data stored in databases often has no intrinsic value outside of the
organization that is hosting it and, therefore, has no requirement to be protected beyond the
normal security mechanisms afforded by i5/OS. An example might be the customer shipping
preferences used during an order entry process.

In fact, some might argue that if the security infrastructure is established correctly, then
encryption is not adding much protection anyway (conversely, if the security infrastructure is
not established correctly, then you are definitely adding very little benefit with encryption).

While this observation may be especially true in the case of the System i, you may still be
required to demonstrate compliance to a general standard imposed by legislation or
governing body, or just to instill consumer confidence.

4.2.2 Define your requirements

First, understand that defining exact encryption requirements is not a task that is going to be
accomplished by a single person. While security projects are often placed on the shoulders of
IT staff, interpretation of the legal directives, along with assessment of the ramifications of
non-compliance, is not appropriate for an IT staff member.

You are going to be far more successful if you form a committee or task force that oversees
the development of the requirements.
44 IBM System i Security: Protecting i5/OS Data with Encryption

The types of staff to include in the evaluation and planning stages might be:

� Application programmer
� Systems programmer
� Security officer
� IT Management
� Auditor
� Corporate attorney

Your objective is to bring together the people who know what is required for compliance, with
those who know which of those requirements pertain to the organization. A sound
understanding of the database and the data stored within it are critical.

Assessing what data is a good candidate for encrypting is based on these established
requirements.

4.2.3 Evaluate the impact of change

Once the requirements are defined, you must determine the impact on the existing data and
applications.

If you use a third-party application provider, you will want to check and see whether it has a
release of its application that addresses compliancy requirements. If this is the case, much of
the discussion will be simplified, although you will still want to understand how the vendor
approaches their solution, including key management techniques, and whether they
understand and apply a strong base i5/OS security infrastructure to build upon.

Much of the evaluation is going to be similar to that of any application modification and should
address questions such as:

� Does your organization own the source code for the applications that access the data?

If the source code is not accessible, then it is going to be difficult to perform database
encryption. Using SQL views with INSTEAD OF triggers might be one solution.

� Do you have a secure i5/OS environment (that is, can you protect the encryption keys)?

If your i5/OS environment is not secure then how are you going to prevent unauthorized
access to the keys and decryption routines?

� What key management techniques are going to be utilized?

You have choices about what types of keys to use, as well as in which mechanism to store
your keys: an i5/OS keystore file, a self-managed keystore, a hardware-based key
management device, or even SQL-based passwords.

� Are there existing staff with the skills (and time) necessary to perform modifications?

Are you going to have to hire outside resources, and how accessible are those skills in the
market?

� What interfaces are currently used to access the data (native, SQL, ODBC, and so on)?

Awareness of how your data is used by all applications is necessary to ensure that no
mission-critical access method is overlooked.

� What transports are used to move the data off the server (tape media, electronic, and so
on)?

If you store the data encrypted in the database and then transmit plaintext across insecure
transport mechanisms, then you are exposed.
Chapter 4. Analyzing needs and defining scope 45

� What approach is going to be used to modify the database?

If changes are necessary, you have to decide how the structure will be designed to
support the encrypted information.

� What is the impact of converting the existing data and validating the results?

Ensuring that the initial conversion is correct is critical, as is assessing how the conversion
window will impact your application availability.

� Are there quality assurance (QA) or test systems that are going to be affected?

Do not move encrypted data to test systems and then store in plaintext.

� Where is the data utilized within the application?

� Are there reports that include private data?

Securing reports and eliminating unnecessary private information can prevent a simple
spooled file review from revealing confidential information.

� How will this impact system recovery and high availability functions?

Make sure that HA rollover and disaster recovery tests include additional steps for key
recovery and data access.

� Are there mechanisms that are going to be incompatible with encrypted data?

� Do you rely on any tools or applications that are not compatible with encrypted data in the
files?

One of the biggest reasons that data leaks is that many organizations do not fully understand
where their information is stored, and how it is accessed and by whom. Once the impact of
the changes are established, the estimated cost of addressing each of them can be
ascertained.

4.2.4 Return on investment

Compare the cost of making the necessary changes and infrastructure investments against
the estimated cost of not encrypting. This cost may be manifested in non-compliance fines or,
more likely, in the financial and political cost to the business incurred from a data breach (or
possibly both).

Depending on the type of data that is breached, these costs may include:

� Notification costs for victims
� Identity theft protection fees
� Loss of confidence by consumers and business partners
� Corporate embarrassment
� Fines for non-compliance
� Restriction of business function
� Lawsuits filed by data owners
� Complete business failure

Take any combination of these, and you will often find that the cost of being reactive far
exceeds the cost of being proactive.

As mentioned previously, much of the above is a statement of the importance of data security
in general, as it is a statement about encryption. However, encryption provides an additional
layer of protection that reduces the impact of a breach, in the event that one does happen.
46 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 5. Managing keys on System i

Assuming that you are using appropriate algorithms and key sizes, an attack by breaking an
algorithm or performing an exhaustive key search is unlikely. More likely, an attacker will look
for an improperly protected key. This chapter describes how to protect your keys with three
kinds of key management: Cryptographic Services, CCA, and roll-your-own.

5

© Copyright IBM Corp. 2008. All rights reserved. 47

5.1 Cryptographic services

This section discusses the implementation of cryptographic services on i5/OS.

5.1.1 Master keys

i5/OS Cryptographic Services supports eight master keys. These master keys are used to
encrypt other keys (KEKs and data keys), but not data. The master keys are stored in the
i5/OS Licensed Internal Code (LIC) in an area that cannot be displayed or even viewed via
dump service tools. You can access the master keys only with the Cryptographic Services
APIs. To reference a master key on an API, you simply use a number, 1–8.

Master key versions
A Cryptographic Services master key is a 256-bit (32-byte) AES key. Each master key has
three versions:

� New

The new master key version contains the value of the master key while it is being loaded.

� Current

The current master key version contains the active master key value. The current version
is the version that is normally used on a cryptographic operation.

� Old

The old master key version contains the previous current master key version. It is used to
prevent the loss of data and keys when the master key is changed.
48 IBM System i Security: Protecting i5/OS Data with Encryption

Each version also contains a key verification value (KVV), a 20-byte hash of the key value.

Figure 5-1 depicts the structure of a master key.

Figure 5-1 Structure of a master key

Master key APIs
Cryptographic Services supports four APIs for managing master keys:

� Load Master Key Part

The Load Master Key Part API takes a passphrase as input. It is hashed and then loaded
into the new version. You can load as many passphrases as desired. Each passphrase is
XORed into the new version of the master key. To ensure that no single individual has the
ability to reproduce a master key, you should assign passphrases to several people.

� Set Master Key

The Set Master Key API activates the new master key value, which consists of the
passphrases previously loaded. The following steps are performed:

a. The current version master key value and KVV are moved to the old version, wiping
out what was in the old version.

b. The new version master key value is finalized. Then it and its KVV are moved to the
current version.

c. The new version is erased.

The Set Master Key API returns the master key KVV. You should retain this value so that
at a later date you can determine whether the master key has been changed.

Key KVV

Key KVV

“New”

“Current”

“Old”

Key KVV
Chapter 5. Managing keys on System i 49

Figure 5-2 Setting a master key

� Clear Master Key

The Clear Master Key API clears the specified master key version. Before clearing an old
master key version, care should be taken to ensure that no keys are still encrypted under
it.

� Test Master Key

The Test Master Key API returns the key verification value (KVV) for the specified master
key. You can compare this to the KVV returned on the Set Master Key API to determine
whether the master key value has changed.

Master key KVV
A master key KVV is a 20-byte hash of the master key value. A KVV is kept with each version
of a master key.

Whenever a key is encrypted under a master key, the KVV for the current version of the
master key is returned. When a key is stored in a keystore file, the KVV of the master key is
stored in the key record along with the key value. When a key encrypted under a master key
is stored outside keystore, it is best to store the KVV with it.

When a key encrypted under a master key is used on an API and the master key KVV is
supplied, cryptographic services will check the supplied KVV against the master key versions'
KVVs. If the supplied KVV matches the current version KVV, the operation will proceed
normally. If the supplied KVV matches the old version KVV, the operation will proceed but
return a diagnostic to the API informing the user that the key needs translation. If the supplied
KVV matches neither, the operation will end with an error.

If no KVV is supplied on an API for a key encrypted under a master key, the current version
will be used to decrypt the key.

Key KVV

Key KVV

“New”

“Current”

“Old”

Key KVV
50 IBM System i Security: Protecting i5/OS Data with Encryption

5.1.2 Keystore files

You can securely store KEKs and data keys in a Cryptographic Services keystore file. A
keystore file is a database file that you create with the Create Key Store API. You specify the
file name and library, the public authority, and the master key that encrypts all the key values
stored in the keystore file.

To store a key in a keystore file, use the Write Key Record API. Parameters let you specify
the type and size of key; whether the input key value is a binary string, a BER-encoded string,
or a Privacy Enhanced Mail (PEM) certificate; whether the input key value is encrypted and, if
so, the KEK information; and a label for referencing the key. Or you can use the Generate
Key Record API to generate and store a random key value in a keystore file, again specifying
key type and size and a label for the key record.

Any type of key supported by cryptographic services can be stored in a keystore file. Keys are
stored in one of two formats:

� Secret key format

The secret key format includes all symmetric and HMAC keys.

� PKA key format

The PKA key format stores an RSA public/private key pair, or just an RSA public key.

Figure 5-3 Cryptographic Services keystore

When creating keystore files, give careful consideration to authorities. Even though key
values in a keystore file are encrypted, anyone with access to the keystore file and the
appropriate API (for example, the Decrypt Data API) could hack the data. Note, however, that
a keystore file moved to another system is useless if the master key under which it was
encrypted has not been set identically. For more help on securing your keystore files, refer to
5.4, “Establishing a secure keystore environment” on page 65.

Note: A key hierarchy is a popular key management technique primarily because it
reduces the number of secrets to protect. Be discriminating about how many master keys
you actually need to use and must therefore manage.

Key store: MYKEYS
Library: KEYLIB
Public authority: *EXCLUDE
Master Key ID: 2

PKA Key

Key
Label

Key
Type

Key
Size

Master
KVV

Encrypted
Key

Key
Label

Key
Type

Key
Size

Master
KVV

Encrypted
Private Key

Public
Key

Secret Key
Chapter 5. Managing keys on System i 51

If a master key for a keystore file is changed, the keys in that file must be translated. The
Translate Key Store (OPM, QC3TRNKS; ILE, Qc3TranslateKeyStore) API can be used to
translate keystore keys to another master key, or if the same master key is specified, to the
current version of the master key.

5.1.3 Changing a master key

Change a master key by loading key parts and setting the master key as described in “Master
key APIs” on page 49.

Whenever a master key is changed, all keys encrypted under that master key require
translation. For keystore files, use the Translate Key Store (OPM, QC3TRNKS; ILE,
Qc3TranslateKeyStore) API. For keys stored outside a keystore file, use the Export Key then
Import Key APIs.

5.1.4 Master key variants

You can limit the use of a master key encrypted key by using a master key variant, or control
vector. For example, if your application program uses a key from keystore to encrypt sensitive
data, you can use variants to ensure that the key cannot be used to decrypt the data.

A master key variant is a value that is XORed into the master key value before encrypting a
key. Refer to Figure 3-2 on page 31.

On APIs that encrypt a key with a master key (such as the Generate Key Record API), specify
a master key variant via the Disallowed Function parameter or field. Functions that you can
disallow are encrypt, decrypt, Message Authentication Code (MAC and Hash MAC), sign, or
any combination of these.

When a key that has been encrypted under a master key variant is used on an operation (for
example, decrypting data), the variant must be supplied to properly decrypt the key. The
master key variant for a keystore file key is stored in the key record and picked up
automatically when that key is specified on an API. For keys outside of keystore, you must
manage and supply the master key variant yourself. If no variant is supplied, the default is to
allow all functions.

If the supplied variant indicates that the operation is disallowed, an error is returned. If the
variant is altered to force the operation, the results will be bad. For example, if you use an
altered variant on the Decrypt Data API, the decryption proceeds normally, but the result is
not cleartext data.

5.1.5 Using keys in an application

In this section we discuss using keys in an application.
52 IBM System i Security: Protecting i5/OS Data with Encryption

Key formats
Cryptographic Services APIs allow you to specify a key in several ways. The Encrypt Data,
Decrypt Data, Calculate MAC, Calculate HMAC, Calculate Signature, and Verify Signature
APIs all take a parameter called Key Description. Several structures are defined for the Key
Description parameter that allow you to specify the following keys:

� A clear key

Fields describing the key (such as size, type, value) can be specified for any of the above
APIs. This is not the preferred method of specifying a key because it exposes the clear
key value within the application program. It is better to use one of the other formats.

� A key in keystore

The file name, library, and label for a key in a Cryptographic Services keystore file can be
specified on any of the above-mentioned APIs.

� A PKCS #5 key

RSA Security's Public Key Cryptography Standard #5 derives a symmetric key from a
password, a salt, and an iteration count. The password must be kept secret. The salt
value, which need not be secret, is used to produce a large set of key possibilities for each
password. Therefore, the salt should be a good random value. The iteration count is used
to increase the length of computation. Using a large iteration value makes an exhaustive
search for the key prohibitive. You can specify PKCS #5 format on the Encrypt Data,
Decrypt Data, Calculate MAC, and Calculate HMAC APIs. For more information about
PKCS #5, Password-Based Cryptography Standard, refer to the standard found at the
following URL:

http://www.rsa.com/rsalabs/node.asp?id=2127

� A key in a PEM formatted certificate

Privacy Enhanced Mail (PEM) is a standard for secure electronic mail over the Internet. A
PEM formatted certificate is a public-key certificate that is base64 encoded and has the
text "-----BEGIN CERTIFICATE-----" and "-----END CERTIFICATE-----" appended to the
beginning and the end.

You can specify a PEM formatted certificate on the Encrypt Data, Decrypt Data, and Verify
Signature APIs. For more information about PEM formatted certificates, refer to RFC
1421, Privacy Enhancement for Internet Electronic Mail, found at the following URL:

http://www.ietf.org/rfc/rfc1421.txt

� A key from certificate store using:

– A certificate label

A label identifies a public key in a public-key certificate located in i5/OS certificate
store. You can specify a certificate label on the Encrypt Data, Decrypt Data, and Verify
Signature APIs.

– A distinguished name

A distinguished name (the certificate owner) identifies a public key in a public-key
certificate located in an i5/OS certificate store. You can specify a distinguished name
on the Encrypt Data, Decrypt Data, and Verify Signature APIs.

Note: A public-key certificate is basically a digital ID that can be verified. It contains a
serial number, the owner's name, the issuer's name, validity dates, the public key
component of the owner's RSA key pair, and a digital signature created by the issuer.
Base64 is an encoding scheme in which any arbitrary sequence of bytes is converted
into printable ASCII characters.
Chapter 5. Managing keys on System i 53

http://www.rsa.com/rsalabs/node.asp?id=2127
http://www.ietf.org/rfc/rfc1421.txt

– An application identifier

An application identifier identifies the private key associated with a public-key
certificate in an i5/OS certificate store. You must use Digital Certificate Manager (DCM)
to create an application definition and assign a certificate to it before performing an
operation with a private key. You can specify an application identifier on the Encrypt
Data, Decrypt Data, and Calculate Signature APIs. For more information about DCM
and the i5/OS certificate store, refer to the iSeries Information Center.

� A key in a key context

A key context is a temporary repository for your key information.

Key context
A key context is a temporary repository for your key information. It is created with the Create
Key Context API. The key information can be pulled from a keystore file or a PEM certificate,
or specified in PKCS #5 format or in the clear. The API returns an 8-byte token, which can
then be specified on other cryptographic APIs to reference your key.

A key context holds key information, such as the key type (for example, MD5-HMAC, AES,
RSA), key format (binary or BER-encoded), and key length. Key contexts serve several
purposes. Using a key context:

� Improves the performance for some algorithms such as AES and RC2

Some algorithms require initial key processing prior to performing the cryptographic
operation. By using a key context, initial key processing need only be performed once.

� Allows the application to erase the clear key value from program storage

Erasing the clear key value from program storage will help protect the key.

� Allows the application to use an encrypted key value with the APIs

Exposure of clear key values within the application program should be reduced as much
as possible. Encrypted key values can be used on an API if a key context is created.

A key context is destroyed using the Destroy Key Context API. If not explicitly destroyed, it
will be destroyed at the end of the job.

5.1.6 Key distribution

The following information is particular to distributing Cryptographic Services keys. Refer to
3.8, “Key distribution” on page 34, for a more general discussion about the topic.

Moving a keystore file
In general, you should not share master keys with another system. Each system should have
unique master keys. However, to move an entire keystore file from one System i to another
without exposing clear key values, you need to set up identical master key values on both
systems. To avoid exposing your master key values, perform the following steps:

1. Set up a temporary master key on both systems by loading and setting an unused master
key with identical passphrases.

2. On the source system and create a duplicate of the keystore file (for example, using the
CRTDUPOBJ CL command).

3. Translate the duplicated keystore file to the temporary master key.

4. Move the keystore file to the target system.

5. Delete the translated keystore file from the source system. (You still have the original.)
54 IBM System i Security: Protecting i5/OS Data with Encryption

6. On the target system, translate the keystore file to another master key.

7. Clear the temporary master key on both systems.

Moving single keys
To move a single key that is encrypted under a master key (in or outside of keystore) to
another system, use the Export Key API. The Export Key API translates the key from
encryption under the master key to encryption under a KEK. On the target system, you can
then use the Write Key Record API to move the migrated key into keystore, or you can use
the Import Key API to translate the key value to encryption under a master key. Of course,
both systems must agree on the KEK.

5.1.7 Generating keys

Cryptographic Services has three APIs for generating key values: Generate Key Record,
Generate Symmetric Key, and Generate PKA Key Pair. All three APIs use the system PRNG
to generate cryptographically strong pseudorandom key values. Refer to 2.1.4, “Random
number generation algorithms” on page 18, for more information.

5.1.8 Backing up keys

Keeping a current backup of all your keys is essential. In V5R4, you must back up your
master keys by saving their passphrases. Master key passphrases should not be stored on
the system in plaintext. Also, do not encrypt them under any of the system's master keys or
any key encrypted under a master key. If the master keys are lost (for example, when the LIC
is installed) or damaged, you will be unable to recover the passphrases and therefore the
master keys. Store the passphrases securely outside the system, such as independently
storing them in safes.

Any time a new key is added to a keystore file, you should make a backup of the file. In
addition, any time the keystore file is translated, you need to make a new backup of the file.

Do not forget about keys stored outside of keystore. These should be backed up as well.
Generally, these should not be encrypted under a master key. If you store a key outside of
keystore, it is best to encrypt it under a KEK. If you encrypt it under a master key and that
master key is changed, you must remember to translate the key.

5.2 CCA key management

The 4758 and 4764 cryptographic coprocessors offer a high degree of security, but with the
added cost of complexity. Done properly, using the cryptographic coprocessors with CCA can
provide the most secure key management possible. The following sections discuss some of
the more salient features of CCA key management. For in-depth reading, refer to CCA Basic
Services Reference and Guide for the IBM 4758 PCI and IBM 4764 PCI-X Cryptographic
Coprocessors, available on the following Web site:

http://www-03.ibm.com/security/cryptocards/library.shtml

Note: The Export Key API is shipped with public authority *EXCLUDE. Be very careful
about the access that you give to the Export Key API. Anyone with access to master key
encrypted keys and the Export Key API can obtain the clear key values.
Chapter 5. Managing keys on System i 55

http://www-03.ibm.com/security/cryptocards/library.shtml

5.2.1 Configuring the cryptographic coprocessor

Prior to setting up your key management, you must configure the coprocessor. Do this using
the Cryptographic Coprocessor configuration Web-based utility found on the System Tasks
page, as follows:

http://your-server-name:2001

Or you can write your own application to configure the coprocessor. To set up a cryptographic
coprocessor on System i:

1. Create a device description.

The device description is used by the system to direct cryptographic requests to the
coprocessor. The device description specifies the specific hardware resource. The device
description also specifies a default location for key storage. You can create a device
description with or without naming the keystore file for the cryptographic coprocessor.

2. Name the keystore file.

Before you can perform any operation in i5/OS using a keystore file or key stored in a
keystore file, you must name the keystore file. You can name a keystore file explicitly by
using a program, or you can name it by configuring it in the device description.

3. Set the environment ID (EID) and clock.

The cryptographic coprocessor uses the EID to verify which coprocessor created a key
token. It uses the clock for time and date stamping and to control whether a profile can log
on.

4. Define and create user roles and profiles.

The cryptographic coprocessors use role-based access control. In a role-based system,
you define a set of roles that correspond to the classes of coprocessor users. Next, you
enroll each user by defining an associated user profile to map the user to one of the
available roles.

Below are some suggestions:

– Set up the coprocessors to enforce a dual-control, split-knowledge policy.

– Carefully consider the coprocessor commands that should be enabled or restricted.
Once the node is fully activated, no one person should be able to cause detrimental
actions.

– Create a recovery profile that can reset master key passphrases. Set this profile to
expire a year later than the other profiles and lock it away.

– Triple check all your profiles.

– Delete the default profile after everything is set up.

5. Load a function control vector.

The function control vector tells the cryptographic coprocessor what key length to use to
create keys. You cannot perform any cryptographic functions without loading a function
control vector.

More detailed information about these steps can be found in the i5/OS Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm

Also refer to the Redbooks publication iSeries Wired Security, Protecting Data over the
Network, SG24-6168, found at the following Web site:

http://www.redbooks.ibm.com/redbooks/SG246168.html
56 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm
http://www.redbooks.ibm.com/redbooks/SG246168.html

5.2.2 Master keys

After you load a function control vector, load and set the master keys. CCA master keys are
used to encrypt other keys, not data. They are securely stored within the coprocessor secure
hardware module (HSM).

CCA supports two master keys. One is used to protect symmetric keys. The other is used to
protect asymmetric keys. The CCA master keys are triple-length (168-bit) triple DES keys.

Each master key is composed of three master key registers called new, current, and old. They
function like Cryptographic Services master key versions. When loading a master key, the
parts are accumulated in the new master key register. After the parts are loaded, the new
master key is set by moving the current master key register to the old master key register,
and the new master key register to the current master key register, as depicted in Figure 5-2
on page 50.

Establishing a master key
The easiest and fastest way to load and set master keys is through the Cryptographic
Coprocessor configuration Web-based utility found on the System Tasks page at:

http://server-name:2001

Or you can write an application program. If writing an application program, use the
Master_Key_Process verb (or API).

Either way, you have three methods for establishing a master key:

� Establish a master key using clear information.

You supply individual clear key parts. You can force separation of key part responsibility
by setting up the coprocessor so that it requires at least two different roles to load the
parts.

Be sure that you have a backup of the clear key parts. This is commonly done by
recording the values on paper and independently storing them in safes.

� Randomly generate a master key.

There are two ways to randomly generate a master key:

– Within the coprocessor

You can request that the master key value be randomly generated within the
coprocessor. Using this method, no one can know the value of the master key because
the key value is not available outside the coprocessor. To back up the master key, you
must clone it to another coprocessor.

– Outside the coprocessor

Within the Web-based configuration utility, you can request that random values be
generated for your key parts. The generated values will appear in your window. You
should write down these values so that you can store them as a backup.

� Clone a master key.

The cryptographic coprocessors have the ability to copy a master key from one
coprocessor to another without exposing the master key value. This is done through a
process called cloning. The master key is split into n shares, of which m shares (m<=n)
can reconstitute the master key value. Any combination of shares fewer than m cannot
reproduce the master key value. One or more shares are moved separately to the target
coprocessor, and when enough shares have been loaded, the master key value is
reformed. Each master key share is signed and encrypted to ensure secure transport.
Chapter 5. Managing keys on System i 57

The cloning process involves a sender, certifier, and receiver. Many steps need to be
performed to clone the master key from one coprocessor to another one. Detailed
information about how to perform master key cloning is documented in the Redbooks
publication iSeries Wired Security, Protecting Data over the Network, SG24-6168.

5.2.3 Key tokens

CCA handles keys in a structure called a CCA key token. A CCA key token is a data structure
that contains information about a key. Use the Key_Token_Build verb to build a key token.
Use the Key_Token_Parse verb to parse a key token.

There are three kinds of key tokens:

� Internal key token

An internal key token is bound to the cryptographic hardware that forms it because the key
value is encrypted under the coprocessor’s master key. Most CCA operations, such as
encrypt, MAC, and sign, require that the key be in an internal key token. An internal key
token contains:

– The key value encrypted with a CCA master key

– The control vector

– The master key verification pattern (used to detect under which master key register the
key is encrypted)

– The modulus and public key exponent for RSA keys

– A token validation value (a type of checksum to ensure the integrity of the token)

� External key token

An external key token is used to communicate a key between nodes, or to hold a key in a
form not enciphered by a CCA master key. An external key token contains:

– The key value encrypted with a CCA transport key (a KEK used only for exporting or
importing)

– The control vector

– The modulus and public key exponent for RSA keys

– A token validation value

RSA public keys are never encrypted. When they are not accompanied by the private key,
they are stored as an external key token.

� Null key token

A null key token has no key value, but has a control vector.

5.2.4 Keystore files

CCA keystore files are DB2 files. You can create a keystore file through the Web-based
configuration utility, or your application program can create one using the
Key_Storage_Initialization verb.

Note: If you specify a keystore file that already exists, it will be deleted and recreated
without any warning.
58 IBM System i Security: Protecting i5/OS Data with Encryption

You can create two different types of keystores. The Cryptographic Coprocessor uses one
type to store symmetric (DES and double-length (112-bit) TDES) keys and the other to store
asymmetric (RSA) keys.

You can create as many keystore files of either type as you wish. A CCA keystore file is used
to store both data-encrypting keys and key-encrypting keys.

Securing your keystore files with object authorities is important. Refer to 5.4, “Establishing a
secure keystore environment” on page 65, for help.

When working with keys from keystore you must first designate a keystore file. Do this using
the Key_Storage_Designate verb, or by defaulting to the keystore file configured in the
cryptographic device description.

To generate a key in keystore, first use the DES_Key_Record_Create or the
PKA_Key_Record_Create verb. These verbs add a key record with a null key token to a
keystore file. Then generate a key into the key record with the Key_Generate or
PKA_Key_Generate verb.

DES keystore records hold internal key tokens. PKA keystore records can hold internal or
external key tokens.

You can also import keys into keystore with the Clear_Key_Import, Data_Key_Import,
Multiple_Clear_Key_Import, or PKA_Key_Import verbs.

Key records are referenced by key label. A key label can hold one to seven name tokens
separated with a period (.). Each name token can be one to eight characters in length, for a
maximum total length of 64 characters.

5.2.5 Retain keys

RSA keys can be retained in the hardware secure module. To load an RSA key into retain
storage you use the PKA_Public_Key_Hash or PKA_Public_Key_Register verb. To generate
a PKA key in retain storage use the PKA_Key_Generate verb. In this case, only the public
key is returned.

You reference a retained key by label. Depending on how the coprocessor storage is being
used, normally you can store between 75 and 150 RSA keys in retain storage.

5.2.6 Control vectors

CCA supports a sophisticated control vector set. Refer to 3.5.2, “Key use” on page 31, for a
general description of control vectors. A CCA control vector defines the key type and key
usage.

� The key type determines with what verbs a key can be used. Key type might allow a key to
be used with several verbs, or it might restrict the key to one verb. For example, a DES
key defined as type MACVER can only be used with the MAC_Verify verb. Whereas, a
DES key defined as type DATA can be used with the Encipher, Decipher, MAC_Generate,
or MAC_Verify verbs.

Note: Two prototype files, QAC6KEYST (for the DES keystore) and QAC6PKEYST (for
PKA keystore), are shipped in the QCCA library. Do not delete, initialize, or alter these files
in any way.
Chapter 5. Managing keys on System i 59

� Key usage values further restrict the use of the key. For example, you can allow or
disallow a key to be exported, you can force the key to be a double-length key, and you
can enforce what type or form of key a KEK can act on. For example, a KEK defined as
type EXPORTER can only be specified on verbs that encrypt a key for export. But, if the
usage is defined as NOT_KEK, it cannot be used to export a key that is a KEK.

A CCA control vector can be applied to keys encrypted under a master key or encrypted
under a KEK. The CCA control vector makes it possible to give symmetric keys asymmetric
properties. For example, the same key value can be limited to encryption only or decryption
only, generating a MAC or verifying a MAC, importing a key or exporting a key, generating a
PIN or verifying a PIN. In general, using control vectors that reduce the capability of the key
will reduce the possibilities for misuse.

5.2.7 Key identifier

Many CCA verbs support a Key identifier parameter. The Key identifier parameter must
contain a variable holding a key token or a key label. The key label is an indirect reference to
a key token record in a keystore file.

5.2.8 Key distribution

This section discusses the distribution of keys.

Between CCA nodes
This section discusses key distribution between CCA nodes.

Using a symmetric KEK
To move a key securely between nodes, encrypt it with a symmetric KEK called a transport
key. The transport key must be installed at both locations.
60 IBM System i Security: Protecting i5/OS Data with Encryption

On the sending side, the control vector for the transport key defines it as an exporter key (that
is, it can translate a key from an internal form (encrypted under a CCA master key) to an
external form (encrypted under the transport key). On the receiving end, the control vector for
the transport key defines it as an importer key (that is, it can translate the key from external
form to internal form). This establishes a one-way key distribution channel, as depicted in
Figure 5-4.

Figure 5-4 One-way key distribution channel

Using a PKA KEK
Use the PKA_Symmetric_Key_Export verb to encrypt a symmetric key under the RSA public
key belonging to the intended key recipient. The verb exports the key by decrypting it with the
master key and then encrypting it with the RSA public key.

Use the PKA_Symmetric_Key_Import verb to recover a symmetric key encrypted under an
RSA public key. The verb imports the key by decrypting it with the RSA private key and then
encrypting with the master key.

Between a CCA and non-CCA node
To move a key between a CCA system and a non-CCA system, you must use a special
technique called the Pre-exclusive-OR technique. Basically, on the CCA side, the transport
KEK that will be used to export or import the key must be XORed with the key’s control
vector. This removes the influence of the control vector on the KEK, so that the key will be
translated correctly when exported or imported. This process is described in more detail in
Appendix C, “CCA control-vector definitions and key encryption,” in the CCA Basic Services
Reference and Guide for the IBM 4758 PCI and IBM 4764 PCI-X Cryptographic
Coprocessors.

Note: Be careful enabling verbs that allow key export. If a key does not need to be
exported, then set the control vector such that it will not allow it.

Node A

Internal data key

TDES
Decrypt

TDES
Encrypt

Node B

TDES
Encrypt

TDES
Decrypt

Key_Export Key_Import

Master Key

Exporter KEK

Master Key

Importer KEK

Internal data key

External data key
Chapter 5. Managing keys on System i 61

Between two System i’s
Another method to distribute CCA keys from one System i to another is to move the entire
keystore file. The master keys on the coprocessors must be set up identically. Many steps
need to be performed to clone the master key from one coprocessor to another one. Detailed
information about how to perform master key cloning is documented in the Redbooks
publication iSeries Wired Security, Protecting Data over the Network, SG24-6168.

5.2.9 Changing master keys

When you set a master key you should translate all keys that were encrypted under the
former master key to avoid losing access to them. You can translate keys in keystore by
using the Cryptographic Coprocessor configuration Web-based utility or by using the
Key_Token_Change or PKA_Key_Token_Change verbs. If you do not translate your keys
after a master key is changed and the master key is changed again, you will loose all keys
encrypted under that master key and all data encrypted under those keys.

5.2.10 Generating keys

CCA uses its cryptographically secure random number generator to generate:

� Clear keys

When generating a clear symmetric key, use the odd-parity mode of the
Random_Number_Generate verb. Use the Clear_Key_Import or
Multiple_Clear_Key_Import verb to create a key token in application storage or in a
keystore file with the key value encrypted under the master key.

When generating a clear RSA key pair, use the PKA_Key_Generate verb.

� Clear key parts

When generating symmetric key parts, use the odd-parity mode of the
Random_Number_Generate verb for one key part and the even-parity mode for all other
key parts. This will ensure that the key will end up with odd parity. The key parts should be
owned by different individuals. The Key_Part_Import verb is used to load the key parts
one at a time. The key parts are XORed together to form a symmetric key.

� Encrypted internal keys

The Key_Generate and PKA_Key_Generate verbs return an internal key token to the
application program or to a record in a keystore file. The key value is encrypted under the
master key and is ready for use.

� Encrypted external keys

Besides returning the generated key encrypted under the master key, the Key_Generate
and PKA_Key_Generate verbs can return the generated key encrypted under an exporter
key (a KEK used for exporting) or an importer key (a KEK used for importing) in external
key tokens.

The PKA_Symmetric_Key_Generate verb generates a key encrypted under an RSA
public key for distribution to another node (that has the corresponding private key). The
generated key is also returned encrypted under the symmetric master key or a DES KEK.

� Encrypted key pairs

The Key_Generate verb allows you to generate an encrypted key that is output twice
under opposite control vectors, for example, one with encipher and one with decipher
capabilities.
62 IBM System i Security: Protecting i5/OS Data with Encryption

5.2.11 Backing up keys

In this section we discuss backing up keys.

Master keys
There are basically two ways to back up CCA master keys:

� Save the key parts (for example, on paper) and store them in a secure place, such as in
separate lock boxes.

� Clone the master key to another coprocessor. Many steps need to be performed to clone
the master key from one coprocessor to another one. Detailed information about how to
perform master key cloning is documented in the Redbooks publication iSeries Wired
Security, Protecting Data over the Network, SG24-6168.

Keystore files
CCA keystore files are database files. You can back them up using i5/OS save/restore
functions such as the SAVOBJ and SAVLIB CL commands.

Any time a new key is added to a keystore file, you should make a backup of the file. In
addition, any time the keystore file is translated, you need to make a new backup of the file.

Do not forget about keys stored outside of keystore. These should be backed up as well.
Generally, these should not be encrypted under a master key. If you store a key outside of
keystore, it is best to encrypt it under a KEK, such as an importer key. If you encrypt it under
a master key and that master key is changed, you must remember to translate the key.

5.2.12 Using multiple coprocessors

System i supports multiple coprocessors. Depending on your System i model and which
coprocessors you own, it can support from 3 to 32 coprocessors on the system, and from 3 to
8 coprocessors per partition. Refer to the iSeries Information Center at the following URL for
specifics:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm

During System i IPL, all detected cryptographic coprocessors are assigned a resource name
beginning with CRP01, then CRP02, and so on. To use a coprocessor, you must create a
device description object and specify one of the cryptographic resource names.

Spreading the work across multiple Cryptographic Coprocessors and multiple jobs gives you
better performance provided that they are all configured the same. However, there may be
situations when you do not want all of the coprocessors to be configured the same. You may
even want groups of coprocessors with different configurations.

There are a number of considerations when using multiple coprocessors:

� Your application can use the default coprocessor or it can explicitly select a coprocessor
with the Cryptographic_Resource_Allocate verb. On this verb you specify the device
description object name, not the resource name. The default device description object
name is always “CRP01”. Once the coprocessor is allocated, CCA requests are routed to
it until it is deallocated. To deallocate an allocated coprocessor, use the
Cryptographic_Resource_Deallocate verb. These verbs are scoped to the process, and
all threads within the process use the same coprocessor.

� If you configure all of the coprocessors the same, then all internal keys will work identically
on all of the coprocessors. Any data encrypted on one coprocessor can be decrypted on a
Chapter 5. Managing keys on System i 63

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajcco4758.htm

different coprocessor. All keystore files will work interchangeably with any of the
coprocessors.

The most important part of configuring the coprocessors identically is the master keys. If
you entered the master key in parts for one coprocessor, you must enter the same master
key parts for all of the other coprocessors if you want them to work interchangeably. If a
random master key was generated inside of the coprocessor, then you must clone the
master key to the other coprocessors if you want all of the coprocessors to work
interchangeably.

� If you configure your coprocessors differently, you must keep track of which keystore files
and operational keys will work for a given coprocessor. While configuring the
coprocessors differently may limit the scalability of cryptographic applications, it can
provide more granularity in terms of security. For example, you can grant different object
authorities to different cryptographic device descriptions.

If you use retained PKA keys then the coprocessors are not interchangeable. Retained
keys cannot be exported outside of the coprocessor. Therefore, any cryptographic request
that uses a retained key must be sent to the coprocessor that stores the retained key.

5.3 Roll your own key management

You may wish to develop your own key management. For example, SQL does not provide
any sort of management for your secret passwords (which are essentially keys). Some
considerations when developing your own key management on System i are:

� How are your keys generated?

If you are generating passwords, it is best to use a 128-character password to ensure a
128-bit security level. If you are generating actual keys, use a cryptographically secure
random or pseudorandom number generator. For example, use the Cryptographic
Services Generate Pseudorandom Numbers API.

Refer to 3.3.1, “Generating a key value” on page 28, for further discussion.

� Where will you store your keys?

Keys (or passwords) should not be hardcoded. If you store a key on the system, it should
be stored in a System i object, such as a database file, a stream file, or a data area.

� How will your application access your keys?

Your application must have a means of identifying a particular key. Usually, this is done by
assigning a label.

When your application retrieves a key, it should only retrieve the one called for and no
others.

� How are your object authorities set?

Perhaps the most important consideration is how you set up object authorities to both your
keystore objects and to the application that accesses the keystore objects. Refer to 5.4,
“Establishing a secure keystore environment” on page 65, for an in-depth discussion.

Can keys be authorized individually? One way to accomplish this is by allowing the
creation of multiple keystore objects.

� Will the keys be stored encrypted?

If you move your keystore object off the system (for example, via a SAVOBJ for backup
purposes), the keys should be encrypted. If you also are concerned that an unauthorized
person may obtain access to your keystore object on the system, then encrypt the keys as
64 IBM System i Security: Protecting i5/OS Data with Encryption

soon as they are created. Otherwise, you can encrypt the keys prior to them leaving the
system.

The question now is about the management of the KEK.

– Who will be in charge of managing the KEK? How will it be established? Should it be
established in parts?

– How is the KEK protected?

Perhaps the safest method is to not store the KEK on the system at all. For example,
you could establish it interactively at job startup.

An easier method is to use a Cryptographic Services master key. You cannot use the
master key to encrypt your keys directly, but you can establish a KEK under the master
key that you could use to encrypt your keys.

– Will you be changing the KEK, and how often?

When the KEK is changed, the keys must be translated. To do so:

i. Create a second KEK.

ii. Translate your keys from the old KEK to the new KEK. For example, you could use
the Cryptographic Services Translate Data API.

� When do you back up your keys?

Your keys should be backed up whenever you add a key or change a key. If the keys are
encrypted, they should also be backed up whenever they are translated. Do not forget to
back up the KEK as well.

5.4 Establishing a secure keystore environment

A keystore file is an object that contains encryption keys. Although the keys inside the
keystore are themselves maintained in an encrypted state, for both CCA and Cryptographic
Services, the keystore is a simple physical file object. For this reason, we recommend that
you still take measures to ensure that the store is protected from misuse.

Although i5/OS object-level security is outside the scope of this book, we feel that the
importance of this topic warrants a quick tour of one way to establish a secure environment
for a keystore file.

More detailed and expansive information about i5/OS object-level security and auditing can
be found in the iSeries Security Reference, SC41-5302-09, at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgsecref.htm

The following explanations are written in the context of using a Cryptographic Services
keystore file, but apply equally to CCA keystore or other i5/OS objects containing keys.

5.4.1 Object security 101

The i5/OS security algorithm requires that a user requesting access to an object must first
have authority to the library that it resides in.

Note: No object can be protected from a user with All Object special authority. This also
applies if the user is a member of a group (profile) that has *ALLOBJ.
Chapter 5. Managing keys on System i 65

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgsecref.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgsecref.htm

To access the contents of a library, the user must have (at least) operational (OPR) object
rights along with READ and EXECUTE data rights to the library. These rights are most
commonly provided via the object use (*USE) authority template.

Object rights can be viewed and edited with the Edit Object Authority (EDTOBJAUT) CL
command or via iSeries Navigator.

Once the user has the necessary authority to the library, most actions on objects inside that
library are controlled by the objects’ own authorities.

5.4.2 Create user profiles

When securing an object, it is often desirable for the object to be owned and accessed by
user profiles created specifically for that task.

Although it is common to combine the ownership and access function to a single user profile,
we generally do not recommend this, as an object owner has certain authorities to the object
just by owning it. Also, making a user profile a member of the owner as a group profile
provides that same ownership right to each member.

Keystore owner
To create a user profile suitable for owning the keystore, we need a basic user with no special
capabilities and no ability to actually sign onto the system:

CRTUSRPRF USRPRF(KEYOWNR) PASSWORD(*NONE) STATUS(*DISABLED) INLPGM(*NONE)
INLMNU(*SIGNOFF) LMTCPB(*YES) TEXT('Keystore Owner') SPCAUT(*NONE)

Keystore user
To create a user profile to access the keystore, we need another basic user similar to the one
created for the keystore owner:

CRTUSRPRF USRPRF(KEYUSR) PASSWORD(*NONE) STATUS(*DISABLED) INLPGM(*NONE)
INLMNU(*SIGNOFF) LMTCPB(*YES) TEXT('Keystore User') SPCAUT(*NONE)

5.4.3 Location, location, location

The first step in securing the keystore file is to create a secure library to place it in. This can
be accomplished using the Create Library (CRTLIB) CL command.

An example of creating a library that has public authority of *EXCLUDE is:

CRTLIB LIB(KEYSTORLIB) AUT(*EXCLUDE) CRTAUT(*EXCLUDE) TEXT(‘Secure Library’)

Generally, the user who creates the library will be designated as the owner of that library. By
default, this provides that user with *ALL rights to the library. It is desirable to change this to
an inactive user profile to reduce any vulnerability. We accomplish this with the Change
Object Owner (CHGOBJOWN) CL command, as below:

CHGOBJOWN OBJ(KEYSTORLIB) OBJTYPE(*LIB) NEWOWN(KEYOWNR) CUROWNAUT(*REVOKE)

Note: If a library exists in the user’s library list, and the user refers to an object in that
library without the library designation (that is, using library *LIBL), then i5/OS does not
check the authority to the library unless the action requested affects the library itself.
66 IBM System i Security: Protecting i5/OS Data with Encryption

As the owner, KEYOWNR is automatically given the authority of *ALL. Although ownership
alone affords distinct privileges (including the ability to authorize themselves and others to the
object), we revoke the private authority for this library from this user for clarity:

RVKOBJAUT OBJ(KEYSTORLIB) OBJTYPE(*LIB) USER(KEYOWNR) AUT(*ALL)

At this point, only those profiles with *ALLOBJ special authority can perform any action on the
library and have the possibility of accessing the objects that the library will contain. In order to
allow the profile KEYUSR access to the library, we need to specifically authorize it. This
profile still only requires minimal access to the library as follows:

GRTOBJAUT OBJ(KEYSTORLIB) OBJTYPE(*LIB) USER(KEYUSR) AUT(*USE)

This will permit access to any existing objects inside the library. KEYUSR will not be able to
add new objects into the library, including new members to an existing physical file. The
actions that can be performed on the objects are defined by the objects themselves.
Understand that *USE authority to the library does not prevent changes or deletions of
objects if the user has that level of access to the objects themselves.

Now we are ready to work at the object level.

5.4.4 Secure the keystore

Once the keystore is created, it is important to define the authorities that users have. This is
because if a user has access to a library, most activities are controlled at the object level.

We previously defined our library to be secured from everyone except KEYUSR, so this next
step is just one extra level of protection. Here we ensure that unlisted users do not have any
direct authority to the keystore:

GRTOBJAUT OBJ(KEYSTORLIB/keystorefile) OBJTYPE(*FILE) USER(*PUBLIC) AUT(*EXCLUDE)

Next, we transfer the ownership to the KEYOWNR profile and then, for clarity only, revoke the
private authority that they automatically gained with this transfer:

CHGOBJOWN OBJ(KEYSTORLIB/keystorefile) OBJTYPE(*FILE) NEWOWN(KEYOWNR)
CUROWNAUT(*REVOKE)

RVKOBJAUT OBJ(KEYSTORLIB/keystorefile) OBJTYPE(*FILE) USER(KEYOWNR) AUT(*ALL)

Finally, we authorize KEYUSR to all data functions (add/change/delete) for the keystore file:

GRTOBJAUT OBJ(KEYSTORLIB/keystorefile) OBJTYPE(*FILE) USER(KEYUSR) AUT(*CHANGE)

Note: You may want to consider creating an additional profile (for example, KEYADMIN)
that has *USE access to the library and *CHANGE access to the keystore file. This profile
would then be used to perform all key maintenance functions using the same programming
methodologies outlined in this section for KEYUSR.

This would enable us to grant the KEYUSR profile *USE authority (read-only) to the
keystore file.
Chapter 5. Managing keys on System i 67

5.4.5 Accessing the keystore

In our scenario, only KEYUSR currently has any access to the keystore, and that profile
cannot sign on. When an application program needs to decrypt data it also needs to have
authority to access the contents.

There are two main methodologies to accomplish this: switch profile APIs and adopted
authority.

Switch profile APIs
These programming interfaces allow a job to switch midstream to another profile and gain the
rights of that profile. By switching to the user profile KEYUSR the program can temporarily
gain access to the keystore.

Although this is a more modern approach, the process requires more explanation than is
possible in this book.

Also, be careful not to provide access to a command line while the profile switch is in effect,
as that command line will now provide direct access to the KEYSTORLIB library and the
keystorefile object contained within it.

Adopted authority
By default, when an application program runs, it only has the authority of the user that is
running it. However, it is possible to define the program attributes to instruct the system that if
the user’s authority proves insufficient, then the program owner’s authority should be
checked. This is function is called adopting authority.

Using the infrastructure that we created in this section, we can now use a program to access
the keystore using the adopted authority of KEYUSR. The creation of this program is not
covered in this section, but the commands to set a program called dcrpytpgm in library applib
to run with KEYUSR’s adopted authority are noted below.

First, we need to change the program to be owned by the KEYUSR profile:

CHGOBJOWN OBJ(applib/dcryptpgm) OBJTYPE(*PGM) NEWOWN(KEYUSR) CUROWNAUT(*REVOKE)

Then set the program to defer to the owner’s authority if the user’s authority proves
insufficient:

CHGPGM PGM(applib/dcryptpgm) USRPRF(*OWNER)

As we have previously authorized the profile KEYUSR to the library and to the keystore file,
any user with at least *USE authority to the dcryptdta program will now be able to perform the
necessary encryption/decryption functions. However, if the same user attempts to access the
keystore file directly, he will be denied access.

Note: If using adopted authority, we recommend considering using the Use Adopted
Authority (QUSEADPAUT) system value. This control accepts the name of an
authorization list that may contain a list of user profiles. This list specifies which users can
create a program that adopts authority.
68 IBM System i Security: Protecting i5/OS Data with Encryption

5.4.6 Auditing keystore access

With a file as sensitive and critical to system data as a keystore, you might want to consider
auditing. Fortunately, i5/OS contains the functionality to easily accomplish this.

Auditing infrastructure
It is first necessary to create a security audit journal if one does not exist. After that we use a
combination of system values and profile/object settings to define what we want to have
audited.

Use the Display Security Auditing (DSPSECAUD) CL command to determine whether a
security audit journal already exists and what types of system-information is currently being
audited.

If auditing is not active, use the Change Security Auditing (CHGSECAUD) CL command to
perform all of the necessary steps including creating the journal and journal receiver and
setting the QAUDCTL and QAUDLVL/2 system values.

Ensure that the QAUDCTL system value includes the *OBJAUD option if you wish to perform
object-level auditing.

Object-level auditing
i5/OS auditing can be performed on individual objects. To accomplish this, the auditing
control system value (QAUDCTL) needs to include the value *OBJAUD. From there, it is a
simple matter of activating the desired level of auditing:

CHGOBJAUD OBJ(KEYSTORLIB/keystorefile) OBJTYPE(*FILE) OBJAUD(*ALL|*CHANGE)

An Object Auditing (OBJAUD) value of *ALL will audit all change and use activities. A value of
*CHANGE will only audit change activities. Audit journal entries of ‘ZR’ and ‘ZC’ will be
recorded if the object is read or changed, respectively.

Another option is to audit a program designed to accesses the keystore. The process is the
same for programs as for files. Understand that this option alone will not record accesses
made by unofficial programs. However, by combining the two approaches, it is possible (with
some programming) to determine whether an unofficial program is gaining access to the
keystore.

System-level auditing
i5/OS is also capable of auditing activities involving program authority adoptions. By including
the *PGMADP value in the auditing level system value (QAUDLVL), the system will write an
‘AP’ entry to the audit journal every time a program that adopts authority is used.

Finally, a general auditing recommendation is to include the *AUTFAIL option in QAUDLVL.
This option writes an ‘AF’ entry to the audit journal whenever an action fails due to insufficient
authority (which would include a user attempting to directly access the secured keystore).

Reporting
To interrogate the audit journal entries, use the Display Audit Journal (DSPAUDJRNE) CL
command or a commercial application designed for this task.
Chapter 5. Managing keys on System i 69

70 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 6. Choosing a data encryption
method

This chapter provides guidance about choosing a cryptographic interface, a cryptographic
algorithm, and a mode of operation. It also provides additional tips and techniques.

6

© Copyright IBM Corp. 2008. All rights reserved. 71

6.1 Factors to consider

The following factors should be considered when choosing a method for your encryption
project:

� What algorithms are supported by the cryptographic interface that you wish to use? For
example, your compliance requirements may require you to store master keys on
tamper-resistant hardware, in which case you will use the CCA API set for the
cryptographic coprocessors, which restricts you to DES, TDES, and RSA.

� Are you required to be compatible with another cryptographic application? For example,
will you be decrypting data that was encrypted elsewhere?

� Encryption often requires the plaintext data to be padded before encrypting. Can you
handle ciphertext that is longer than the plaintext, or must it be the same length? For
example, when encrypting DB2 data, you may not be able to change the width of your
columns.
72 IBM System i Security: Protecting i5/OS Data with Encryption

6.2 Choosing an interface

Several cryptographic API sets are available to i5/OS applications for encrypting data at rest.
Refer to 2.3.2, “Cryptographic interfaces” on page 23, for a short description of each.
Table 6-1 compares System i cryptographic interfaces.

Table 6-1 V5R4 Cryptographic interfaces comparison

6.3 Choosing an algorithm

For a general discussion on cryptographic algorithms, refer to 2.1, “Cryptographic algorithms”
on page 12. For a discussion on key strengths, refer to 3.2, “Size matters” on page 26.

6.3.1 Cipher algorithm

In this section we discuss our recommendations for using a cipher algorithm.

i5/OS Cryptographic
Services

Common Crypto
Architecture

SQL built-ins Java Cryptography

Use � General purpose � General purpose
� Financial

� DB2 column
encryption

� General purpose

Cryptographic
service provider

� i5/OS LIC
� 2058a

a. The 2058 Cryptographic Accelerator is no longer available. However, if you have one, it is still supported.

� 4758b

� 4764

b. The 4758 Cryptographic Coprocessor is no longer available. However, if you have one, it is still supported.

� i5/OS LIC � Java Crypto
Extension

Supported
algorithms

� DES
� TDES
� AES
� RC2
� RC4
� RSA
� D-H
� MD5
� SHA1
� SHA2

� DES
� TDES
� RSA
� MDC
� MD5
� SHA1
� RIPEMD-160

� RC2
� TDES

� DES
� TDES
� AES
� RC2
� MARS
� Blowfish
� RC4
� SEAL
� RSA
� D-H
� DSA
� MD2
� MD5
� SHA1
� SHA2

Key management � MK protected KSc

� MKs stored in LIC

c. Master key protected keystore.

� MK protected KS
� MKs stored on

secure hardware

� No key
management

� PW protected
keystored

d. Password protected keystore.

Pre-req’se

e. Prior to V5R4, 5722-AC3 Cryptographic Service Provider, a no-charge program product, is required to enable
cryptography on the system. In V5R4, this product is no longer required.

� � SS1 Option 35
� 5733CY1 (4764)

� � 5722JV1 JDK™

Cost � Part of i5/OS � $$ for
coprocessor

� Part of i5/OS � Part of i5/OS
Chapter 6. Choosing a data encryption method 73

DES
NIST withdrew DES as a standard in 2005. Because of its short key length, it is no longer
considered secure against the power of today’s processors. In fact, DES keys have been
broken in under 24 hours. Do not use DES.

AES
AES is the official replacement for DES. AES is an excellent choice both for security and
speed. AES is available through the Cryptographic Services APIs and Java Cryptography.

AES supports three key lengths: 128 bits (16 bytes), 192 bits (24 bytes), and 256 bits
(32 bytes). It is best to use a 256-bit key. Because of collision attacks, it actually gives you
128-bit security.

Use CBC mode to hide patterns in the data. If the size of your data is not on a block size
boundary, you have the following options.

� Select the pad option. This increases the size of your ciphertext to the next block-size
multiple.

� To keep your ciphertext the same size as your plaintext, implement CUSP mode of
operation. CUSP mode can be implemented as follows:

a. Use CBC mode to encrypt up to the last partial block of plaintext.
b. Encrypt the last block of ciphertext again.
c. XOR the last partial block of plaintext data with the same number of bytes from step b.

If the data length is less than the block size, the initialization vector is used in place of the
last block of ciphertext in step a. This process is identical for encrypting or decrypting.

Cryptographic Services supports three AES block sizes:128 bits (16 bytes), 192 bits
(24 bytes), and 256 bits (32 bytes). A 256-bit block size is best because a larger block size
reduces the number of ciphertext collisions that leak information. However, the AES standard
only specifies a 128-bit block size. Therefore, when using a 256-bit key with a 128-bit block
size, it is important to limit how much total data is encrypted with a single key. (Otherwise, you
might as well use a smaller key size.) With CBC mode, you should limit it to 232 blocks or so.

TDES
If AES is not a choice, use triple DES. Three-key TDES is preferable over two-key TDES.

Use CBC mode to hide patterns in the data. If your data is not on a block size boundary, you
have the following options:

� Select the pad option. This increases the size of your ciphertext to the next 8-byte
boundary.

� Implement CUSP mode, as explained above, for the last partial data block. This keeps
your ciphertext the same size as your plaintext.

� With Cryptographic Services, you can also use OFB or CFB modes to keep your
ciphertext the same size as your plaintext. Even though these modes use TDES like a
stream cipher, Cryptographic Services requires the length of your data to be a multiple of
eight. Therefore, perform the following steps:

a. Pad out your data (for example, with nulls) to the next 8-byte block boundary.

b. Encrypt using OFB or CFB mode. We prefer CFB mode because with OFB mode the
plaintext is easy to manipulate via changes to the ciphertext.

c. Trim off the end of the ciphertext the number of bytes that was padded.
74 IBM System i Security: Protecting i5/OS Data with Encryption

Decryption is similar. You must pad out the ciphertext (for example, with nulls) to the next
8-byte boundary and then decrypt.

RC2
Although RC2 has been around since 1987, the details of the algorithm were kept secret until
1996. There does not appear to be as much analysis of RC2 as there is for TDES and AES.
We believe that it is preferable to use AES or TDES over RC2.

RC4
RC4 is a stream cipher and is available through Cryptographic Services and Java
Cryptography. One of the attractions of RC4 is that the ciphertext is always equal in length to
the plaintext. However, key management can be a problem. Because of the nature of the
RC4-compatible algorithm, using the same key for more than one message severely
compromises security. If keeping the ciphertext length equal to the plaintext length is a
requirement, we prefer that you use a block cipher with CUSP or CFB modes of operation,
rather than RC4.

6.3.2 Hash and HMAC algorithms

Use a strong hash algorithm like SHA-256 or SHA-512 if possible. (Do not bother using
SHA-384. The underlying function performs all the work of SHA-512 and then throws away
part of the results.) Because of weaknesses in the SHA hash functions, it is best to perform a
double hash (that is, hash the data then hash the result). Do not use MD5.

We recommend SHA-256 HMAC for your authentication function, as well. Use all 256 bits
(32 bytes) for your MAC value if possible. A double hash is not needed for HMAC operations.

6.4 Tips and techniques

Review the following tips and techniques:

� Do not encrypt and store ciphertext when all that is needed is a hash. In many situations,
the application program does not actually need to recover plaintext data from encrypted
data. For example, an application that needs to verify a credit card holder or look up
information related to a credit card need not store the encrypted credit card data, but
rather a hash of the data.

� One of the biggest misconceptions in cryptography is that encrypting data will prevent the
alteration of data. However, just because data is encrypted does not mean that it cannot
be deleted, repeated, or even altered. Even when using modes of operation, a bit of
altered ciphertext affects at most two blocks of plaintext, and it is often difficult for the
application to detect it. Therefore, it is almost always a good idea to apply an
authentication function to your data. Generating and verifying a MAC using an HMAC
function has better performance than using a block cipher. Again, we recommend
SHA-256 HMAC.

� It can be argued that authentication of data is more important than concealing data. For
that reason, it is best to apply an authentication function first, and then encrypt the data so
that the MAC is also concealed. Do not use the same key for encryption and
authentication.

Note: When reusing a key with OFB or CFB modes, you must never reuse an IV or the
security will be severely compromised.
Chapter 6. Choosing a data encryption method 75

� Simple attacks can be performed on the MAC of a plaintext message. To prevent these
attacks, concatenate the length of the input data to the start of the message, then MAC
the entire string.

� When using a block cipher, to avoid identical ciphertext in the first block, you must use a
substantially different IV for each message that uses the same key. One option is to
generate a random value to use as the IV. Or you can use a nonce (a unique number), but
you must first encrypt it before using it as an IV, and you must ensure that for a given key,
the counter never wraps. Note that the IV need not be kept secret.

� Encrypt only sensitive information. Non-sensitive information is often easily accessed and
allows an adversary who has access to both the plaintext and the ciphertext to mount a
known plaintext attack. For example, an adversary knows the standard header or trailer of
your records and can see the encrypted records. Therefore, you should not encrypt the
beginning and ending of the record. Or perhaps he knows that you store a last name at the
start of an encrypted data record and has access to it and also to a plaintext list of those
last names. Even more dangerous would be to allow the adversary to add his own last
name, which he then can observe encrypted. This is known as a chosen plaintext attack.
76 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 7. Database considerations

Working with encrypted data in DB2 for i5/OS presents unique challenges when compared to
traditional plaintext data. These challenges include the impact on both new and existing
database file structures, as well as the applications used to access them.

How you design any database influences the efficiency, as well as the availability, of the
applications that access it. This especially holds true when encrypted data is involved.

This chapter discusses the impact that hosting encrypted data has on i5/OS database design,
how you move to an encrypted data model, and also how encrypting your data affects some
popular utility applications commonly used to add, update, and view file data.

7

© Copyright IBM Corp. 2008. All rights reserved. 77

7.1 Understanding how the database is used

When planning a database change, whether it is in preparation for encryption or as a result of
some other requirement, it is critical that the use of the database be documented and
understood.

If field attributes (data type and length) need to be modified to accommodate ciphertext data,
all references to that field need to be located and evaluated for the impact of the modification.

Most high-level language (HLL) program languages, such as RPG or COBOL, address fields
differently depending on their data type—an attribute commonly affected by encryption. This
dictates that all programs referencing the field need to be assessed, and potentially modified,
over and above any modifications required for the encryption/decryption of the data.

Discovering application usage
In order to understand how your data is used throughout the application, you must research
which files contain those fields, and when and where those files are used by the application.
You also may want to differentiate between the uses of the file data (read-only versus
read/write).

Although there are commercial applications available specifically to perform this function, it is
possible to build a simple map of file usage using the Display Program Reference
(DSPPGMREF) CL command. Select the target object type (*PGM) and direct the command
output to a file. Query the results to find which programs refer to the files containing any fields
in question.

Each program needs to be reviewed by a programmer for field references that would be
affected by:

� Field length changes
� Field data type changes (if currently numeric)
� Encryption/Decryption requirements

7.2 How encryption impacts database structure

The storage requirement for ciphertext is often different from that of plaintext data. This
difference manifests itself in three ways:

� Increased data length

The encryption algorithm that you decide to use, as well as the length of the plaintext data,
impacts the length of the data in its encrypted form.

� Alternate character set

The ciphertext version of your data will include character representations that cause
decimal-data errors if stored in numeric fields. If the plaintext field is currently defined in
the file as a numeric field, then this needs to be changed to a field type that can correctly
handle the non-numeric data.

Note: The DSPPGMREF command only identifies native file declares. If your application
utilizes embedded SQL, then you will also need to search the source code for those file
references.
78 IBM System i Security: Protecting i5/OS Data with Encryption

� Specification of CCSID of 65535

CCSID is an abbreviation for Coded Character Set Identifier. It is a 16-bit number that
represents a specific encoding of a specific code page. The CCSID value of 65535
indicates that the data is stored in HEX and should not be converted between CCSIDs.

For example, a Social Security number (SSN) in the United States is a unique 9-digit
identification number assigned to every legal resident. The data is limited to the characters
0–9. As such, it is entirely possible for that data, in plaintext form, to currently be stored in a
field that is defined as packed or zoned numeric.

A Data Description Specification (DDS) file layout example is represented in Figure 7-1.

Figure 7-1 Sample employee master file with plaintext Social Security number defined as numeric

However, when this data is encrypted it may become 16 bytes of mixed characters, which can
no longer be stored in a numeric field. For example:

plaintext: 123456789
ciphertext: Q^a.Wg%A8IluPva#

In this case, the field definition needs to be altered to accommodate the additional character
combinations as well as the additional field length.

Fortunately, the kind of information that lends itself to being encrypted does not usually
require mathematical or date functionality. These fields can therefore be modified to a
non-numeric format without many technical challenges. That being said, any database
modification can have a significant impact on an application that references it.

If a field definition needs to be modified, you need to decide which technique to use for the
modification. You have two main options:

� Record layout modification
� Database normalization

These two options are discussed in the following sections.

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPPFR TEXT('EMPLOYEE RECORD')
 A*
 A EMPID 10A COLHDG('ID Number')
 A TEXT('ID Number')
 A EMPLNAME 20A COLHDG('Last' 'Name')
 A TEXT('Last Name')
 A EMPFNAME 20A COLHDG('First' 'Name')
 A TEXT('First Name')
 A EMPSSN 9P 0 COLHDG('XXX-XX-XXX (SSN)')
 A TEXT('SSN')
 A EMPDEPT 10A COLHDG('Department')
 A TEXT('Department')
 A K EMPID
 A*
Chapter 7. Database considerations 79

7.2.1 Modifying current record layout structure

The term record layout modification refers to a change to the existing field in an existing file.
For example, in Figure 7-2 we modified the existing Social Security number field originally
shown in Figure 7-1 on page 79, without altering the overall database schema.

Figure 7-2 Employee master file with Social Security number redefined as alpha/numeric

The modification of an existing field requires that the file object be recreated to recognize the
new updated definition. If the field requires only a length modification, then there are two
approaches that you may consider to regenerate the file while retaining the existing data and
file attributes:

� Change Physical File (CHGPF) CL command

The CHGPF command can be used to regenerate the file object from modified DDS while
retaining the integrity of the existing file data.

� SQL’s ALTER TABLE instruction

The ALTER TABLE instruction permits the modification or removal of an existing column
(field) as well as the addition of new ones. Although it can be used to alter a file defined by
DDS, it is most commonly used to modify the structure of a table created by the CREATE
TABLE instruction in SQL. Just remember that if you modify a DDS-based file with this
approach, then the DDS source will no longer match the file object.

These two mechanisms are efficient, as they only rebuild the necessary access paths and
automatically migrate the data and file attribute information to the new file object. However, if
the field requires a data type modification from numeric to alpha/numeric, you are not able to
use the CHGPF command or ALTER TABLE instruction. Instead, you must consider how to
convert the data to the new format.

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPPFR TEXT('EMPLOYEE RECORD')
 A*
 A EMPID 10A COLHDG('ID Number')
 A TEXT('ID Number')
 A EMPLNAME 20A COLHDG('Last' 'Name')
 A TEXT('Last Name')
 A EMPFNAME 20A COLHDG('First' 'Name')
 A TEXT('First Name')
 A EMPSSN 16A COLHDG('ENCRYPTED SSN')
 A TEXT('ENCRYPTED SSN')
 A CCSID(65535)
 A EMPDEPT 10A COLHDG('Department')
 A TEXT('Department')
 A K EMPID
 A*

Note: Some cryptographic algorithms and modes of operation produce cyphertext that is
the same length as the plaintext. Refer to Chapter 2, “Algorithms, operations, and System i
implementations” on page 11, for more information.
80 IBM System i Security: Protecting i5/OS Data with Encryption

More information about data conversion can be found in 7.3.2, “Encrypting existing data” on
page 86.

7.2.2 Normalizing the encrypted fields

As you review the required database changes, you also have an option to externalize the
fields that are to be encrypted, into a file of their own. We refer to this process as database
normalization. For example, instead of altering the original Social Security number field as
we did in Figure 7-2 on page 80, we can create an auxiliary file to contain the (encrypted)
Social Security number field. We have also included the unique employee ID field from the
original employee file, so that we may link the associated records together. This is
represented in Figure 7-3.

Figure 7-3 Normalizing database structure using an auxiliary file

Normalizing avoids having to recompile the existing file. This may be advantageous to your
application environment for reasons that include:

� The file maintains the same level-check identifiers. Application objects generally need to
be created (compiled) in a specific sequence. Database files are created first followed by
the application programs that reference them. This is so that the program compiler can
retrieve the field structure for reference in the program. If the file is subsequently changed
without recompiling the referencing programs, you may receive unexpected results. For
this reason, the level-check feature is designed as a warning mechanism to notify the
program that the file has been created more recently than the program object. Although
the warning can be turned off in the file description, we do not recommended this.

� Recompiling a file object clears the data stored in the file members. Although there are
i5/OS mechanisms (CHGPF command, ALTER TABLE in SQL) to modify a file structure
without losing the data, there are restrictions. Data type changes, common in encryption,
are included in those restrictions. Not changing the existing structure means not having to

Note: If any programs reference the file via internal definition, then those programs must
be located and modified for the new field structure.

Last Name
First Name

Address
City

Social Security No. (old)
Employee Number

Last Name
First Name

Address
City

Social Security No. (old)
Employee Number

Employee Number

Social Security No.

Employee Number

Social Security No.

Employee File Auxiliary File

Application Program
Chapter 7. Database considerations 81

manually migrate the existing data from a temporary location back to the file with the new
field format.

� The application can be modernized in phases. Instead of modifying every program to
reference the data from the new location in a single stage, a program could attempt to
retrieve and decrypt the ciphertext from the auxiliary file first and, if no match is found,
utilize the original plaintext field in the master file. As the data is migrated, the program still
handles both scenarios. Although this requires surplus code to be added to the programs,
in some cases it might be a legitimate trade-off.

A disadvantage of modification by normalizing the field structure is that you now have to
process an additional file I/O for each I/O to the original file. You also end up with obsolete
fields in the database. One possible use for a field made obsolete through normalization is to
re-populate it with an index to link it to the auxiliary record. This index would be necessary if
there is not a unique index in the master file.

Figure 7-4 shows an example of how our auxiliary employee file might look after the Social
Security number is normalized.

Figure 7-4 Auxiliary employee file for Social Security number

Optionally, by utilizing a join-logical file, or an SQL view, the application can continue to read
one file and access all of the data elements of the employee’s record.

7.2.3 Key version field

When reviewing the database structure, you should anticipate the future requirement to
change the data encryption key (the key used to convert the data from plaintext to/from
ciphertext). This may be driven by a legislative requirement or from a breach of key secrecy.
This breach may simply be caused by the key holder leaving the company.

Unlike changing a master key or key encrypting key, the change of a data encrypting key
means that all of the data currently encrypted needs to be translated (decrypted and then
re-encrypted) using the new key. This can prove to be an even greater undertaking than the
original conversion, as we are now requiring the data be decrypted and re-encrypted during

Note: If the old field is not going to be repopulated with an index to the auxiliary file, then
ensure that the plaintext version of the private information is cleared.

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPEXTR TEXT('EMPLOYEE EXTENTION')
 A EMPID 10A COLHDG('ID Number')
 A TEXT('ID Number')
 A EMPSSN 16A COLHDG(‘ENCRYPTED SSN')
 A TEXT('ENCRYPTED SSN')
 A CCSID(65535)
 A K EMPID
 A*

Note: Be aware that join logical files (JLFs) are, by design, read only.
82 IBM System i Security: Protecting i5/OS Data with Encryption

the translation. This may not be something that can be performed in a single pass during a
dedicated window.

Regardless of whether you chose to modify the existing record format structure or to utilize an
auxiliary file, it might be desirable to include a field in the record format that indicates the
variant of the key that was used to encrypt the data.

This works best with additional coding in the application programs to accommodate the
possible existence of different key versions and the determination of the current version.

If translation is required, a conversion program can selectively read records encrypted under
the old version of the key and systematically decrypt and re-encrypt the data using the new
version of the key. The program would then store the updated ciphertext along with the key
version information.

Even if the data is not translated in a single, dedicated pass by a conversion program, the
application programs are still able to decrypt the data (regardless of which key version was
used to encrypt it) and then re-encrypt using the latest key. This effectively adds the capability
of translating the data upon first touch.

Figure 7-5 represents how an auxiliary file defined in DDS might contain key version
information.

Figure 7-5 Incorporating a key version field into an auxiliary file

7.3 Converting the plaintext data to ciphertext

If it is necessary to modify fields or to normalize to auxiliary files, you are required to convert
your data to match the new database layout.

Also, until every record has been processed by the encryption algorithm, the plaintext data is
still visible and vulnerable.

This section describes the main tasks involved in accomplishing both tasks efficiently.

Note: The key version is not the actual key, but a reference for use by the
encryption/decryption routine to determine which key was last used to encrypt the data.
Storing the actual key in the database along with the ciphertext would enable a hacker to
easily gain access to the plaintext data.

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPEXTR TEXT('EMPLOYEE EXTENTION')
 A EMPID 10A COLHDG('ID Number')
 A TEXT('ID Number')
 A EMPKVER 15A COLHDG('Key version')
 A TEXT('Key Version')
 A EMPSSN 16A COLHDG('ENCRYPTED SSN')
 A TEXT('ENCRYPTED SSN')
 A CCSID(65535)
 A K EMPID
 A*
Chapter 7. Database considerations 83

7.3.1 Adjusting to database structure changes

The first stage in converting to an encrypted state is to update the data and application to be
compatible with the new database structure.

The process used to accomplish this depends on whether the changes are made to the
existing record layout, or whether new auxiliary files are being utilized.

Record layout modification
If all of the fields to be encrypted already had the desired data type, and you only needed to
adjust field lengths, you may be able to use the Change Physical File (CHGPF) CL command
or SQL’s ALTER TABLE instruction to regenerate the file object and remap the existing data
stored in the file.

This is accomplished by supplying the name of the updated DDS source member used to
define the file.

Before using the CHGPF command or ALTER TABLE instruction, you should understand the
functionality of each command. Important considerations include:

� It can be long running if the file has a large number of records.

� It requires an exclusive-no-read lock, which means no one can be using the file for any
purpose.

� Data is mapped by field name. If you alter a field name, the data in that field will be lost
during the conversion.

As such, we strongly recommend saving the file before issuing the command.

If the modification entailed data type changes, you need a conversion process to translate the
data from the old data type to the new one. This can be performed via a program that you
write, or via a copy process such as the one outlined below.

The steps are:

1. Back up the original file object.

This backup can performed via saving the file object (and data) to tape, to a save file, or
via a simple duplication of the file using the Copy File (CPYF) CL command or the Create
Duplicate Object (CRTDUPOBJ) CL command.

This ensures that you have the ability to restore the file if necessary.

Note: If the database does not require any modification, you can skip this topic.

Note: The steps outlined below are an example of one approach to migrating data field
lengths and data type.

Before you utilize any methodology, it is important to understand the ramifications of
recreating database file objects. Considerations should be made about the impact that the
size of the data members has on the migration time, as well as the availability of data
during the migration process.

Not adequately testing the migration technique increases the likelihood that data will be
lost or corrupted.
84 IBM System i Security: Protecting i5/OS Data with Encryption

2. Document any unique characteristics to be reapplied after the file is recompiled. For
example, you may want to review the following:

– Database triggers
– Referential constraints
– Logical file information
– Public and private authorities

3. Duplicate the original file source (DDS) member to a new and unique name.

This intermediate file is used during the data type translation.

4. Modify the intermediate file for the correct:

– Field length

– Unpacked numeric data type (if currently defined as packed numeric)

Do not change any numeric field data type to alpha/numeric at this point.

5. Compile the intermediate file.

6. Duplicate the records from the original file to the intermediate file using the Copy File
(CPYF) CL command with the format option as follows:

CPYF FROMFILE(origflib/origfile) TOFILE(intmflib/intmedfile) FMTOPT((*MAP)
(*DROP))

This automatically maps the data by field name while accommodating discrepancies in
field lengths and packed/signed numeric field data type.

7. Modify the original file DDS definition to have the same field lengths as the intermediate
file. Now change any numeric fields that will store ciphertext to be alpha/numeric.

8. Add the following DDS keyword to any field that will store ciphertext:

CCSID(65535)

9. Recompile the original file using the DDS definition modified above.

10.Duplicate the data from the intermediate file to the new version of the original file using the
CPYF command with the format option as follows:

CPYF FROMFILE(intmflib/intmedfile) TOFILE(origflib/origfile) FMTOPT(*NOCHK)

The *NOCHK option copies the data byte for byte, mapping any numeric information into
the alpha/numeric field ready for encrypting.

Ensure that you also plan to:

� Recompile any logical views that reference the master file.
� Re-establish referential constraints and triggers and other custom file settings.
� Review public and private authorities to the new master file.
� Recompile all referencing objects (to prevent level-check warnings).
� Any other considerations determined during step 2.

Database normalization
By moving the encrypted information to an auxiliary file, you avoid having to modify the
original file layout and avoid the complications of recreating the original file object.

A conversion program is required to extract the plaintext data from the original field and
relocate it to the auxiliary file. This is usually a simple read/write process. The original field
can either be cleared of its sensitive data or repopulated with an index value to link each
record to the associated record in the auxiliary file. This is required if the original file does not
provide a unique key to its records.
Chapter 7. Database considerations 85

If an application program references the modified fields, it must be reviewed to ensure that it
correctly handles the alternate field type or field length. In addition, normalization requires the
application programs to be modified to access the information in the auxiliary file, using the
appropriate key or index information from the original file.

If, for some reason, the data extraction to the auxiliary file is not able to be accomplished in a
single pass, you may wish to consider including functionality in the modification to
accommodate the data retrieval from the original field, if the auxiliary record is not found.

7.3.2 Encrypting existing data

After any necessary remapping of plaintext data to a new field definition or to an auxiliary file,
the next step is to encrypt the plaintext data into ciphertext.

For clarity, this process is being explained as separate from the database modification.
However, it is often possible to combine the two processes.

Encryption of new/existing data can be accomplished using any one of the methodologies
outlined below:

� Conversion program

If you wish to perform encryption as a conversion process, it can be summarized as a
read-encrypt-update process over the file currently containing the plaintext data.

Significant (long running) conversions might need to be performed in phases, and this can
be accomplished by enabling the application program to handle the existence of either
plaintext or ciphertext data in the same field.

� First touch

By coding the application to read the plaintext data and then write/update as ciphertext,
the data is gradually converted. The application needs to handle the existence of either
plaintext and ciphertext in the same field until all of the data is encrypted.

Consideration also needs to be given for the time anticipated for all of the data records to
be touched. Combining first touch with a subsequent conversion pass ensures that all
records are processed in the necessary time frame.

� Database file trigger

An update (*UPDATE) or new record (*INSERT) trigger that intercepts and encrypts the
plaintext data before storing it in the file record is similar to the first touch approach
described above. The advantage is that the application does not need to be modified to
perform the encryption when writing/updating the data to the file.

Alternatively, by writing a simple read/update routine, the trigger program can be invoked
for all existing records similar to the conversion program methodology.

Triggers may work well when plaintext is stored in auxiliary files, as that type of file is only
accessed when the encrypted information is required. However, if the encrypted field is in
the same record layout as the rest of the data, that trigger is invoked for every database
update, even if the record was not accessed for the encrypted information.

Any process that converts a large number of records en masse may be very time consuming
and resource intensive. Processing only a test subset of records from a large file provides a
useful estimate of the time required to encrypt all of the existing file data.

If the conversion effort requires more time than the conversion window allows, then you may
employ a technique to reduce that conversion time.
86 IBM System i Security: Protecting i5/OS Data with Encryption

7.3.3 Reducing the initial data conversion window

The time required for data conversion is dependent on many factors such as the size of the
file, available processing resources, and the methodology used to convert the data. In many
cases, the initial conversion (the act of taking all of the existing data that contains plaintext
and replacing with ciphertext) can take a significant amount of time.

The most time-intensive component of the conversion effort can be attributed to the
encryption algorithm as it generates the ciphertext. You may want to perform conversion
benchmarking and employ some type of window-reduction technique such as the ones
described below.

Phased conversion
When most programmers write code to accommodate ciphertext data, they are modifying the
application in anticipation of only processing ciphertext. However, with some planning, the
standard application modification to decrypt the ciphertext can be enhanced to perform the
decryption only if the data is no longer being stored in plaintext form. That requires that the
program be able to differentiate between the plaintext and the ciphertext, a topic covered in
8.2.2, “Determining encryption state” on page 100.

By enabling the program to handle both states of the data, the conversion can happen in
multiple passes.

This approach is a way to reduce/eliminate the conversion process by performing the
conversion of plaintext to ciphertext upon first touch of the application. This may only be
viable if all of the data is accessed relatively frequently. If any information is historical in
nature, then you need to consider how to convert those records.

Temporary mapping file
Depending on the type of information that is to be encrypted, one method likely to significantly
reduce the conversion time window is to build a file of all of the plaintext and corresponding
ciphertext values. By separating the encryption process from the mass database update, it is
possible to perform the resource-intensive encryption process over an extended period, even
while the database is in use.

Some suggestions are:

� Create a new library that is secured using normal i5/OS security mechanisms.
� Secure mapping files using normal i5/OS security mechanisms.
� Audit access to the library and mapping files and review those entries.
� Use adopted authority to enable access by the update programs during the conversion.
� Delete the mapping files upon completion of the final conversion.

Note: If you use this approach, you must be cognizant of the vulnerability of having files of
this nature on your system. It is critical that the file be secured by object-level security
during the conversion process, and then deleted upon completion of the conversion.

Just as importantly, the mapping file must be excluded from any saves. Gaining access to
this data would provide significant insight into your encryption process by facilitating a
known plaintext type attack, as well as enabling the simple retrieval of the plaintext data.
Chapter 7. Database considerations 87

An example of a simple mapping file that might be used during the encryption of a Social
Security number is shown in Figure 7-6.

Figure 7-6 Social Security number mapping file

The mapping file methodology requires you to create an extract process and an update
process, as represented in Figure 7-7.

Figure 7-7 Using a temporary mapping file to reduce the initial conversion window

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPSSNXR TEXT('EMPLOYEE SSN XREF')
 A*
 A SSNPLAIN 9A COLHDG('Plaintext')
 A TEXT('Plaintext')
 A SSNCIPHER 16A COLHDG('Ciphertext')
 A TEXT('Ciphertext')
 A CCSID(65535)

A K SSNPLAIN
 A*

Look for match
of plaintext

in
mapping file

Read
master file

(or auxiliary file)

Encrypt & store
plain/ciphertext
combination in
mapping file

Match
found?

Store ciphertext
value in

master file
(or auxiliary file)

Look for match
of plaintext

in
mapping file

Read
master file

(or auxiliary file)

Encrypt & store
plain/ciphertext
combination in
mapping file

Match
Found?

Y N

Extraction Process Update Process

Y
N

88 IBM System i Security: Protecting i5/OS Data with Encryption

The conversion is broken down into two main phases, extraction and update, as explained
below.

� Extraction process

The extract process reads through the master (or auxiliary) file for all variants of the
plaintext field values to be encrypted.

The program should check for the existence of the plaintext value in the mapping file, and
any plaintext value not found should be written along with the associated ciphertext.

The existence check enables the extraction process to:

– Fill in any missing plaintext values that have been added to the original/auxiliary file
between multiple extraction runs.

– Prevent the storage of duplicates of the plaintext value.

– Process very large data files by breaking the extraction down into multiple runs.

– Be restarted after a critical error.

� Update process

After the mapping file is built, a simple record update process is required to update the
master (or auxiliary) record to replace the plaintext with the applicable ciphertext.

This program is extremely efficient, as it only has to perform fast random-access record
retrievals using the plaintext as the key to locate and store the associated ciphertext
value.

We recommend that the update program include processing to handle any plaintext values
that are not located in the mapping file, possibly caused by values added since the last
extract run. Exception handling may include reporting the exceptions or performing an
on-the-fly encryption and write of the missing information to the mapping file.

7.3.4 Validating the encrypted data

If you chose to use a mapping file, then a validation program (or an additional routine in your
extract program) can easily be used to validate the encryption, as well as decryption,
processes.

By reading the mapping file and decrypting the ciphertext back to its plaintext value, it is
possible to validate that the original encryption (and subsequent decryption) was performed
correctly.

Enhancing the mapping file to store the decrypted value allows a query-type match to be
performed against the original plaintext value. If either the encryption or decryption processes
do not work correctly, then the original plaintext and decrypted (validation) value will not
match.
Chapter 7. Database considerations 89

Figure 7-8 Social Security number mapping file enhanced for validation

If no discrepancies are discovered between the two plaintext fields, then this file can now be
used safely when performing the data conversion.

If you do not utilize a mapping file, then you must test the encryption/decryption process
across representative test data to ensure that the ciphertext can be returned to the original
plaintext value. The means by which you verify depend on the methodology used to process
the data.

The challenge of trying to validate the encryption and decryption process when not using a
mapping file is that the ciphertext usually replaces the plaintext value. A possible workaround
might include matching decrypted values against a backup copy of the original file with
plaintext data. Another option would be to store a hash of the plaintext data. When the
ciphertext is decrypted, a hash can be calculated and compared with the stored value.

7.4 Common tools for data maintenance and inquiry

Although the vast majority of data manipulation and inquiry is performed by application
programs designed specifically for that task, a number of generic utilities exist to allow a user
with the appropriate i5/OS authority to have direct access to the data within the file.

These utilities are frequently impacted by the inclusion of encrypted data within a file due to
the expanded character set utilized when the data is in encrypted form. Some characters
preclude the display and editing of the file data via a display window.

This section reviews some of the most common tools used to access file data, along with
considerations to allow their continued use.

7.4.1 AS/400 Data File Utility (DFU)

DFU is a program generator that allows you to create programs to add new records, update
existing records, and delete records from a file. It also allows you to inquire about the data
stored in the file, though there are tools that provide far greater capability in this area.

.....A*. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7
*************** Beginning of data *************************************
 A*
 A R EMPSSNXR TEXT('EMPLOYEE SSN XREF')
 A*
 A SSNPLAIN 9A COLHDG('Plaintext')
 A TEXT('Plaintext')
 A SSNCIPHER 16A COLHDG('Ciphertext')
 A TEXT('Ciphertext')
 A CCSID(65535)
 A SSNDECRYPT 9A COLHDG('Validation')
 A TEXT('Validation')
 A K SSNPLAIN
 A*
90 IBM System i Security: Protecting i5/OS Data with Encryption

A DFU program can be generated without requiring any knowledge of a programming
language by you supplying prompted information about what capabilities the DFU program
should have.

DFU also provides the ability to manipulate data in a file without having to first create a DFU
program. In this case, a temporary program is generated and run by DFU automatically using
default settings.

For more information about the use of DFU programs, refer to the IBM Information Center
Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/

Figure 7-9 AS/400 Data File Utility main menu

Temporary DFU programs
Temporary DFU programs allow a user to access the data in a file without having to provide
any information beyond the name and location of the file. This is a popular approach when
the requirement to access a file is not anticipated and is not expected to be repeated.
However, allowing DFU to create temporary programs over files that contain encrypted fields
will result in decimal data errors and the appearance of the following error message:

The retrieved record contains invalid data.

Note: Unlike modifying plaintext data (which can often be corrected), modifying any
element of the ciphertext usually renders part of the data meaningless, as it no longer
decrypts to the original value. Even if the change is detected, correcting it can often be
impossible, as many characters used in the ciphertext are not accessible via the keyboard.

 AS/400 Data File Utility (DFU)

 Select one of the following:

 1. Run a DFU program
 2. Create a DFU program
 3. Change a DFU program
 4. Delete a DFU program
 5. Update data using temporary program

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 (C) COPYRIGHT IBM CORP. 1981, 2005.
Chapter 7. Database considerations 91

The error is caused by the inability of the 5250 data stream to correctly represent the binary
encryption data. The encrypted data may even include escape sequences that prevent
subsequent fields in the record format from being displayed.

If you wish to continue to utilize DFU to provide editing capabilities over files that contain
encrypted fields, then you have two options:

� Create a logical file (LF) view over the file that omits the encrypted fields.
� Utilize a permanent DFU program to edit the file.

Permanent DFU programs
Permanent DFU programs may be able to present encrypted data for display, based on their
ability to suppress (decimal data) errors, as shown in Figure 7-10. We say that it may present
the data as, like temporary DFUs, it is possible that the ciphertext will contain escape
sequences that will cause unpredictable results.

When DFU is instructed to suppress errors, an algorithm is used on invalid data in an attempt
to correct it. The corrected data is displayed on the screen and no error message is
displayed. The data that is displayed may not necessarily be the data in the field. However,
changes are only recorded to the database if you change the field’s data yourself.

Figure 7-10 Directing a DFU program to suppress errors

However, in light of the fact that modifying encrypted data outside of the intended application
can have serious side effects (including losing the ability to decrypt the data), we strongly
recommend reviewing whether the inclusion of the encrypted data is necessary and
appropriate.

Permanent DFU programs permit the selective display of fields from the record format, as
well as the ability to render a field as read-only. We recommend that DFU programs be

 Define General Information/Indexed File

 Type choices, press Enter.

 Job title My Employee Data
 Display format 2 1=Single, 2=Multiple
 3=Maximum, 4=Row oriented

 Audit report Y Y=Yes, N=No
 S/36 style N Y=Yes, N=No
 Suppress errors Y Y=Yes, N=No
 Edit numerics N Y=Yes, N=No
 Allow updates on roll Y Y=Yes, N=No
 Keys:
 Generate N Y=Yes, N=No
 Changes allowed Y Y=Yes, N=No

 F3=Exit F12=Cancel F14=Display definition
92 IBM System i Security: Protecting i5/OS Data with Encryption

configured to suppress encrypted fields from the display entirely, to remove the risk
associated with a user changing (and thereby corrupting) the ciphertext.

If there is a concern that a DFU user might delete a record, where the only data is stored in a
field that is encrypted but suppressed from the screen, presenting the field in a read-only
mode might be an appropriate compromise.

7.4.2 IBM Query for i5/OS (Query/400)

Query is an inquiry and reporting tool designed to allow rapid development of reports and
data extractions. It has some distinct benefits that include:

� It is easy to use.
� No programming experience is required.
� Observation of i5/OS object-level security.
� Queries can be stored and executed multiple times.
� Queries can be scheduled to run at specific dates/times.

However, it also has some significant security considerations, including:

� Permits access to data outside of application control.

� Reliant on correctly implemented i5/OS object-level security.

� The ability to route query results to an external file presents integrity risk if the user routes
the exported data back into the original master file.

The risks grow exponentially if a file is not correctly secured by i5/OS object-level security.

For queries that are designed to present their results to the screen or to a spooled file,
encrypted fields must be removed from the query definition. This is not normally a problem,
as encrypted data is usually meaningless in both mediums.

However, if the design requirement is to present the data in plaintext form, then you can use
an SQL view. If you do not wish to use SQL, you must first decrypt the file data and then
query it. If your query definition performs record selections or file joins, and the subset of data
is likely to be significantly smaller than the master file, it may be faster to first extract the
selected records into an intermediate file, and then decrypt the results. After that, you can
execute a secondary query over the intermediary file to generate the required report.

You need to be aware of the additional time that this will take to perform, as well as the
requirement to have a highly secure program control the execution if you choose to leverage
multiple queries and a decryption routine.

Also, the use of an intermediate file containing the plaintext data poses a security exposure
for as long as the data exists in a plaintext state. If an intermediate file is absolutely
necessary, we recommend that it be created in the QTEMP library, although, if you are
running your system at security level 40 or lower, then it is still possible for this area to be
accessed by other users or for it to be orphaned if the job ends abnormally. An IPL or a
Reclaim Storage (RCLSTG) would perform the necessary clean up. At security level 50, the
RCLSTG is required as, at that level, the system does not maintain the pointers to the storage
location that are needed by the IPL, to locate and clean up the information

For queries designed to extract data to another database file, the benefit of including the
encrypted data is dependant on the purpose of the extraction. Again, be aware of the integrity
vulnerability associated with performing queries to output files.
Chapter 7. Database considerations 93

You will need to change any query definitions that performed joins via the data that is now
encrypted, to use another data element for the join.

Generally, the safest solution for a query definition that needs to print or display encrypted
data in its plaintext state is to replace it with a program to perform the decryption and output
processing.

7.4.3 Interactive SQL

Working with data via the Structured Query Language (SQL) interface is a common and
practical approach, especially when the file contains a large number of data records.

Think of interactive SQL as the more functional brother of Query/400. Although SQL is more
of a language-driven tool compared to Query/400’s user-friendly interface, it provides many of
the same functions. However, the power of SQL comes with its additional data manipulation
abilities. Unlike query’s confinement to reading data, SQL has the ability to insert new
records, as well as update and delete existing ones. In fact, SQL can be used to define the
database itself.

Similar to query, when the native SQL interface encounters a column containing encrypted
data, it is often not able to display the column, or even the entire record, due to possible
includes of field codes in the binary data that comprises the ciphertext.

If the inclusion of encrypted columns is not a requirement of the SQL operation, selecting only
the required (plaintext) columns allows the data to be displayed without issue. As an
example, general selection statements such as the following should be modified to only select
the plaintext columns:

select * from EMPPF

It might become:

select empid, emplname, empfname, empdept from EMPPF

If the SQL statement requires the inclusion of the encrypted data in plaintext form, it is
possible to use a built-in function to perform the decryption as part of the SQL operation.

7.4.4 Other tools

Other popular tools for data display and manipulation are:

� RUNQRY

As well as providing the ability to execute stored Query/400 definitions, the Run Query
(RUNQRY) CL command provides a way to access file data in a formatted form without
having to first create a query definition by supplying a query definition name of *NONE,
along with the desired files name and location.

As with Query/400 definitions that include encrypted fields, this command will have
unpredictable results when encrypted data is encountered.

� RUNSQLSTM

The Run SQL Statement (RUNSQLSTM) CL command processes a source file containing
any number of SQL statements.

Note: For more information about using SQL to perform cryptographic functions, refer to
Chapter 10, “SQL method” on page 115.
94 IBM System i Security: Protecting i5/OS Data with Encryption

The restrictions for using this command with encrypted data are the same as for
interactive SQL.

� DSPPFM

The Display Physical File Member (DSPPFM) CL command is the standard mechanism
for displaying unformatted data in a file from a 5250 display.

This command will display data in a file that includes encrypted data. The encrypted data
will be represented in a non-readable form, but all other fields will be displayed correctly.

By pressing F10 during the display of ciphertext, you will be able to view the HEX values
for the data.

� iSeries Navigator

The iSeries Navigator graphical interface provides rich functionality related to database
design and maintenance. The view and edit function available under the databases
category will present the ciphertext via its HEX values. This allows the record to be made
available for viewing and editing, although we do not recommend direct editing of the
ciphertext.

In general, existing file utilities can continue to be used, as long as they provide the capability
to select which fields to present to the display or display the ciphertext in its hexadecimal
form.
Chapter 7. Database considerations 95

96 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 8. Application considerations

This chapter discusses the programming considerations for earlier applications when working
with data stored in encrypted form.

8

© Copyright IBM Corp. 2008. All rights reserved. 97

8.1 Accommodating database changes

As you (re)design your database structure to be compatible with the storage of ciphertext,
any changes that you make will have an impact on the programs that reference it. As we
mentioned previously, it is necessary to have a documented overview of where the affected
files are used and how they are used. The changes required will depend on whether the
existing database file was modified or whether the ciphertext is to be migrated to an auxiliary
file.

8.1.1 Record format changes

If you choose to modify the existing record format, the initial impact on the referencing
programs will be dependent on how the file is defined to the program.

If the application uses external definitions, then the references will be updated when the
program is next compiled.

If the file is defined internally, then the program will either:

� Reference the ordered fields by length.

For field references, the starting and ending positions are inferred from the order of the
fields in the definition and the length and data type of each field.

By updating any altered field lengths and data types, the positions for all fields in the
record format will be recalculated during the compile phase.

� Reference by the starting/ending positions in the record format.

If the fields are defined by the starting/ending position of the current fields, then you must
redefine the new positions of the modified fields along with all fields that follow in the
record format.

8.1.2 Database normalization

By using an auxiliary file to store the ciphertext version of the data, you will not have to modify
any referencing programs for changes in the file definitions of the main file.

If a program does not require access to the encrypted data, then the program will not be
required to access the supplemental record stored in the auxiliary file. When assessing use of
the encrypted data, do not overlook whether data is transferred from one file to another by
using matching field names in both files.

If a program requires access to the encrypted data (in either ciphertext or plaintext state), you
will need to define the auxiliary file to the program and code the retrieval of the auxiliary
record based on the unique file key. If it is not possible to uniquely identify a record in the
original file, then the field whose data was externalized should be considered for use as an
index to the associated record in the auxiliary file.

8.2 Working with encrypted data

When working with data in an encrypted form, there are likely to be a variety of changes to
the application function and flow. The magnitude of the changes is dependent on how the
application uses the encrypted data.
98 IBM System i Security: Protecting i5/OS Data with Encryption

This section reviews some areas of design that need to be reviewed in most encryption
projects as well as some possible ways to work through them.

8.2.1 Performing encryption tasks with database triggers

A database (physical file) trigger is a mechanism that invokes a program when a specific
action is performed on a database record.

There are four event actions that can be reacted to as well as two potential timing selections
of each. Table 8-1 outlines the valid combinations of events and timings.

Table 8-1 Valid combination of external trigger events and timings.

Triggers can be defined in two different ways:

� SQL triggers
� External triggers

It is tempting to consider the use of a trigger to perform all of the encryption/decryption
functionality, removing the requirement for any application modification. Although triggers
might be the only solution available if you do not have access to your application source
code, it is not always a silver bullet solution.

One major issue is the performance implications associated with using a trigger. Depending
on the number and type of I/Os performed on the file, a trigger can add significant overhead
to the application. This is due to the fact that a trigger is invoked for every operation related to
the trigger event, even if the data is not being accessed for the encrypted information.

External triggers are created using the Add Physical File Trigger (ADDPFTRG) CL command.
SQL triggers are created with a CREATE TRIGGER statement.

Using an external trigger to encrypt
Creating an *INSERT and *CHANGE trigger on a file in *BEFORE mode permits the program
associated with the trigger to take the plaintext data and convert it to ciphertext before the
database engine writes the data to the file.

A trigger designed to encrypt data is one way to perform the function without requiring
modification to source code, as the encryption operation is transparent to the application
program.

If the database requires any structure modification, then any referencing application program
is also required to be recompiled, or the file needs to be set to ignore level checks. The

Event/timing *BEFORE *AFTER

*READ NO YES

*INSERT YES YES

*CHANGE YES YES

*DELETE YES YES

Note: For practical information about creating and working with both types of triggers, refer
to the Redbooks publication Stored Procedures, Triggers, and User-Defined Functions on
DB2 Universal Database for iSeries, SG24-6503.
Chapter 8. Application considerations 99

decision to ignore level checks generally requires an understanding of the application that is
not attainable without having access to the application source code.

Alternatively, a BEFORE trigger that is invoked by an INSERT or CHANGE event can
intercept a request to store private information in plaintext, and invoke a program that might
perform the following tasks:

� Perform the encryption.

� Store the ciphertext data to an auxiliary file.

� Clear the original plaintext field from the original write/update request (or use it to store an
index to tie it to the auxiliary record).

If the database was already compatible with the format required for the ciphertext, then the
trigger can merely perform the encryption and replace the plaintext with the ciphertext in the
AFTER image buffer, and then allow the database manager to write the data to the file.

Using a trigger to decrypt
A popular feature of a trigger is that it invokes the trigger program regardless of the
mechanism that was used to process the data: application program, SQL, DFU, and so on.
This is because the trigger effectively intercepts the request inside the i5/OS database
engine.

You cannot simply use an external trigger event to return the data in plaintext, as a READ
trigger does not permit the data buffer to be altered by the trigger program. This is by design
and, at first glance, may seem like a limitation. However, if you stop to consider that a rogue
program could completely misrepresent the actual file data to every mechanism that
accesses that data, it is a legitimate one.

If you must use a trigger to decrypt data, you can use an SQL view to perform the decryption
in a user-defined function (UDF). For more information about using SQL to perform
cryptographic functions, refer to Chapter 10, “SQL method” on page 115.

8.2.2 Determining encryption state

Field data can exist in one of two states, encrypted (ciphertext) or decrypted (plaintext). One
of the issues that this presents to a programmer is knowing which one they are dealing with. It
seems obvious when we visually inspect the data, but we may also need to be able to
determine the data state programmatically.

An example is when a field moves through a program by jumping in and out of a series of
work fields, in various states of encryption, before being written out to a secondary database
file. Before writing the record, it might be beneficial to validate that the data is in the correct
state. This is especially true in monolithic applications where the complete path of the field
value might be extremely hard to follow.

Realize, however, that determining the encryption state is more of an art than a science, and
your success depends on the complexity and integrity of the data in your database.

Character analysis
Data that is encrypted usually has a much broader character set than its plaintext equivalent
and may include characters that are not available via the keyboard. One simplistic way to
detect the encryption state is by analyzing the characters included in the data. For example, a
Social Security number in the United States is a 9-digit number containing characters in the
100 IBM System i Security: Protecting i5/OS Data with Encryption

range 0–9. If the program performs a data validity check and determines that there are other
characters present, then it may be assumed that the data is in an encrypted state.

Remember to include any special characters that might be used to format the data. For
example, a telephone number usually comprises the digits 0–9, but, depending on your
database, may also need to accommodate blanks (leading, trailing, or embedded), as well as
other common formatting characters such as ‘() - ‘. Omitting these from the validation string
might falsely identify the data as being in an encrypted state.

Figure 8-1 shows a simple RPG example of performing this character analysis on a Social
Security number field (SSN).

Figure 8-1 Simple RPG program sample to determine encryption state of a field

Note: This is not a foolproof way of determining encryption state, as it is reliant on the
integrity of the plaintext data.

D*
D* Set up program variables
D*
D* Valid_Chars - Characters valid for plaintext
D* SSN Social Security Number
D* State Encryption state
D*
D Valid_Chars C CONST('0123456789')
D SSN S 9A
D State S 9A
C*
C* Receive the SSN from a program parameter
C*
C *Entry Plist
C Parm SSN
C*
C* Set the default state to be plaintext and then evaluate the
C* field to determine if the data has characters outside the valid
C* data range suggesting encryption
C*
C Eval State = 'Decrypted'
C*
C If %Check(Valid_Chars:SSN) > 0
C Eval State = 'Encrypted'
C EndIf
C*
C* Display the field state
C*
C State DSPLY
C*
C Eval *INLR = *On
C Return
C*
Chapter 8. Application considerations 101

If this type of character analysis needs to be performed numerous times in the code, it might
be beneficial to incorporate the logic into an ILE procedure to simplify the mainline code.
Combining this with other procedures (such as a decrypt function) might resemble the RPG
example in Figure 8-2.

Figure 8-2 Using ILE functions to perform encryption-related tasks

If a program accesses multiple sources of encrypted data, then the application could
designate separate procedures for each one, so that the validation can be appropriate for the
particular field. This approach also permits the encryption routines to be modularized and
secured appropriately using i5/OS security.

Field data tagging
Another approach is to utilize an unusual (fixed and unique) string of text and append it to the
actual (variable) data. This enables the programmer to determine the encryption state by
programmatically analyzing the bytes assigned to that position of the data to see if it matches
the value known to the program. For example:

1. The application user enters the telephone number 515-555-8838 at the workstation.

2. The program appends the unique string ‘%TEL% to the unedited data. The resulting string
is 5155558838%TEL%.

3. The program encrypts the result and then stores the ciphertext value in the database.

4. The program later retrieves the data. At any point in the application process, regardless of
the number of field movements, the program can interrogate the last 4 bytes of data. If the
value is ‘%TEL%’ then the assumption is that the data is currently plaintext.

When using this approach, you must factor in the additional bytes required for both the
plaintext and cipher text data in the program functions as well as the database file.

Also, any actual uses of the data need to have the tag string stripped off prior to
display/printing, and so on. Removing the tag string is easier if it is placed in a fixed position.
If used as a suffix, then this may mean blanks or zeros appearing between the actual data
and the tag string.

Field data length
When data is in an encrypted state, it is likely to be longer than the plaintext equivalent. By
determining the length of the data in the field, we can get an indication of the encryption state.

C*
C* Determine the plaintext version of the data
C*
C If encryption_state(SSN) = 'Encrypted'
C Eval plaintext = decrypt(SSN)
C Else
C Eval plaintext = SSN
C EndIf
C*

Note: This is not foolproof, as, depending on the selected encryption algorithm and
plaintext field length, it is possible that the ciphertext length will equal the plaintext length.
102 IBM System i Security: Protecting i5/OS Data with Encryption

Parity tagging
One way to increase the reliability of the field data length approach is to combine it with data
tagging. This might include the calculation of the length of the plaintext data and then
appending that information as the tag.

When the program needs to interrogate the encryption state, it checks the length of the data
(excluding the tag) and then compares that value to the tag. If the two values match, then the
data is most likely plaintext.

The approach has the advantage over the field data tagging technique by not requiring a fixed
(and known) value to be placed in the string and encrypted. Having known text in a ciphertext
field increases the possibility of the encryption being broken.

8.2.3 Data sorting

If your application performs processing or utilizes displays that are dependent on the data
being presented in order of the fields’ plaintext value, then this will no longer function as
expected.

The challenge for the application is that, even if the ciphertext is decrypted back to the
plaintext state before being written to the screen or printed on a report, the sort order of the
records will appear to be completely random. For example, Table 8-2 shows five names
stored in a database file (Jordan, Sydney, Bethany, Leeann, and Brandon) along a simple
ciphertext equivalent. The file is keyed by the name field.

Table 8-2 Sample plaintext to ciphertext for example

When this data is sorted in its plaintext state, it is read in the order shown in Table 8-3.

Table 8-3 Data sorted by plaintext value

Plaintext Ciphertext

Jordan KptFSm

Sydney DufMrU

Bethany nRYjSmU

Leeann KRtSMm

Brandon NtSmFPm

Sort field

Bethany

Brandon

Jordan

Leeann

Sydney
Chapter 8. Application considerations 103

However, when this data is converted and sorted in a ciphertext state, it is read in the order
shown in Table 8-4.

Table 8-4 Data sorted by ciphertext value

As you can see, once the plaintext state is retrieved, there is no alphabetic sequence to the
data.

Subfile-based applications
A subfile is a 5250 display mechanism that presents application data in a form that allows the
user to page through a number of records using the roll up/down or page up/down keys on the
keyboard.

There are two main types of subfile-build methods used in an application:

� Build once

This type of subfile is built by an application as it reads all of the available data in a single
pass. If the maximum number of records is a known entity, then this is the simplest
method to program for. For performance reasons, build once subfiles are traditionally
reserved for processing a data set containing a relatively small number of records. Once
the subfile is presented to the display, the screen manager controls the page up/down
requests and control is only returned to the application program when the application user
requests an option or presses a function key. This subfile can contain a maximum of 9,999
records.

� Page-by-page

Using this method, the application program reads only enough records to fill one page (or
screen) on the display. By working on the premise that the average application user will
often only page down once or twice to access the next page of records, they are fast and
efficient.

There are two subtypes of page-by-page build:

– Page < size

This type of subfile adds speed to the simplicity of the build once approach. Now, the
display manager returns control to the application program, when and if the user
attempts to page down past the last page of records, to add one or more additional
pages of records to the subfile. Like the build once method described above, this
subfile can contain a maximum of 9,999 records, as new records are appended to the
end of the existing subfile.

– Page = size

This subfile only ever contains one page of records. When the user pages in either
direction, the display manager passes control to the program to rebuild the subfile with
the desired page of records. Although the most resource-efficient method, this is often
the most complex to write and is therefore not as common as the other techniques.

Sort field Which decrypts to

DufMrU Sydney

KptFSm Jordan

KRtSMm Leeann

nRYjSmU Bethany

NtSmFPm Brandon
104 IBM System i Security: Protecting i5/OS Data with Encryption

The main advantage of this method is that there is no maximum to the number of
records that can be handled.

Correcting data sequence
There are several methodologies that can be employed to ensure that the data is represented
in the correct sort sequence:

� Sort on an alternate field.

One solution is for you to modify the application to present the data sorted on an alternate
(non-encrypted) field. This keeps you from having to sort the plaintext information after it
is decrypted.

� Sort APIs.

i5/OS provides the QLGSORT and QLGSORTIO APIs to sort data in a file or in a memory
buffer. Using normal data access techniques, you modify the application to read and
decrypt the required data. After that, you can utilize the APIs to resequence the data prior
to display or printing.

If you have a subfile application that performs a page-by-page build, then you should
modify it to be a build once subfile. If not, only the current data in the subfile will be sorted,
and that might only represent a small fraction of the entire data set.

If this modification causes the total number of data records to exceed the capability of a
subfile (9,999 records) or has unacceptable performance implications, then you might
wish to change the program to perform a preliminary data selection (using a
non-encrypted field) to reduce the number of records to be included in the subfile. For
example, ask the application user to enter a postal code before listing account names.

For more information about using the QLGSORT and QLGSORTIO APIs, refer to the IBM
Information Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/apis/nls2.htm

For a practical example, using the sort APIs for a subfile sort, refer to the Code400.com
Web site:

http://www.code400.com/qlgsort.php

� SQL view.

You can modify your application to replace the native I/Os with SQL-based I/Os. Using a
SQL view, your application can access the pre-sorted plaintext data.

For more information about using SQL to perform decryption tasks, refer to Chapter 10,
“SQL method” on page 115.

� Intermediate file.

If your application has to read through a very large number of data records (for example,
greater than 9,999 subfile records) in a valid plaintext sequence, and you do not have a
way to subset that data, then an additional option is to decrypt the data to a intermediate
file and then read that copy instead of the original.

This has obvious performance and time considerations, as the entire file has to be read
and decrypted before the program can even start its original function.

It also presents a security vulnerability, as the data exists on disk in decrypted form. If you
choose this approach, place the intermediate file in library QTEMP during the job’s
execution to help reduce the exposure.
Chapter 8. Application considerations 105

8.2.4 Random access to encrypted data

Applications that need to perform keyed access to files that are keyed by fields that are now
encrypted have similar challenges to programs that sort on the data in encrypted fields.

Again, this is due to the plaintext and ciphertext representations not having any correlation to
each other.

To resolve this, the application must be modified to retrieve the data using another field as the
key. Or encrypt the plaintext data and search using the ciphertext.

8.2.5 Triggers

When triggers are defined for a database file, every mechanism or application that can
perform the function monitored by the trigger will invoke the trigger application.

If your application relies on database triggers to perform database functions, then the
presence of encrypted data should not significantly impact the function of the trigger
programs.

You must ensure that the trigger program does not attempt to process or change the
ciphertext, or it may render the data undecipherable.

Triggers used for performing cryptographic functions are discussed further in “Using an
external trigger to encrypt” on page 99.

8.3 Other considerations

In this section we discuss other areas that should be considered with applications that utilize
encrypted data.

8.3.1 Spooled files

Although not generally considered part of an application, a spooled file containing plaintext
data is a medium that may represent a significant vulnerability in your organization.

Unfortunately, basic spooled file security is often overlooked by System i administrators. A
lack of understanding of the Spool Control (*SPLCTL) and Job Control (*JOBCTL) special
authorities mean that it is often possible for users to access private information outside of any
protection afforded by the database. Even legitimate users are often given these special
authorities when they require only a subset of their capabilities (for example, starting a printer
writer), that could be performed easily via a fixed-function program.

Regardless of whether a spooled report is printed or retained electronically, it has one main
purpose: to present information in human-readable form. Therefore, the only state that a
programmer is ever likely to include on a report is plaintext. For this reason, we recommend
that application programs coded to print private data in its plaintext state be engineered to
either:

� Remove the data.

Try to justify removing private information from the report, as this is the only guaranteed
way to eliminate the risk of accidental disclosure.

� Mask the data.
106 IBM System i Security: Protecting i5/OS Data with Encryption

Masking the data reduces the vulnerability of private data that is required to be included in
plaintext. For example, this may include modifying a customer invoicing application to
present only the last four digits of a consumers credit card number (a feature permitted
under the PCI standards).

For more information about spooled file and output queue security, refer to Chapter 6 of
the iSeries Security Reference Version 5, SC41-5302, or the security category of the
i5/OS Information Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity
.htm

8.3.2 Exported data

Many applications are designed to export data out of the database and store the results in
another file, even one that may reside on another server.

Although legitimate data exports provide additional value to your corporate data, it is
important to ensure that these exports only include private data in plaintext state when
absolutely necessary. An example might include sending data to a bank or government
agency.

If the application generates a plaintext export of the data, ensure that intermediate files are
removed immediately upon completion of the export process.

Sending an export file as a simple e-mail attachment over an unsecured connection or
leaving the previous 12 months’ worth of bank transfer files sitting in a decrypted state in a
folder on the Integrated File System completely undermines any encryption of the physical file
data.
Chapter 8. Application considerations 107

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity.htm

108 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 9. Backup considerations

When working with encrypted data, you must plan to ensure that backup data remains
available and usable. First, you need to make encryption keys available for decrypting backup
data stored in an encrypted form. Second, care must be taken to make sure backup data
does not introduce vulnerability in overall security.

9

© Copyright IBM Corp. 2008. All rights reserved. 109

9.1 Managing keys on a backup system

In order for encrypted backup data to be usable, you must make decrypting keys accessible
on the backup system. Keystores or validation lists used to access keys must be made
available on the backup system. See Chapter 5, “Managing keys on System i” on page 47, for
information about ways to move or distribute key data.

If the encryption solution makes use of encryption-card hardware, hardware must also exist
on the backup system with the required keys in its store. Refer to “Moving a keystore file” on
page 54 for information about how to move or distribute key data in this instance.

Your backup planning should also include a contingency plan for recovering keys that are
compromised, lost, or accidently destroyed. The encrypted data is effectively destroyed if
access to the decrypting keys is no longer possible. Refer to 3.6, “Backing up keys” on
page 32, for recommendations on saving key data.

9.1.1 Coordinating keys between multiple systems

Distribution of new keys and changes to existing keys must be coordinated when data is
distributed among multiple systems. Refer to 3.7, “Changing keys” on page 33, and 3.8, “Key
distribution” on page 34, for additional information.

When keys change, before the former key is destroyed, backup data must be decrypted with
the former key and encrypted with the new key in order to retain access to the data.

9.1.2 Translating keystores

If a hierarchical key structure is used where keys are encrypted by other keys (see KEK), key
translation resulting from changes to keys must also be coordinated on the backup systems.
Refer to 3.7, “Changing keys” on page 33, for additional detail.

9.1.3 Transporting keys between systems

The most secure policy is not to transport keys between systems at all. In this case, keys are
stored locally on each system and changes to keys are coordinated by the system
administrators.

Avoiding transmission of keys is not always possible. If key data must be transported
between systems, a good policy is to encrypt the key data using a KEK. Refer to 3.8, “Key
distribution” on page 34, for additional detail.

9.2 Securing backup data

Data stored for backup purposes should not introduce vulnerability in overall security.

9.2.1 Transporting data to the backup system

Encrypted data stored to media such as disk or tape should be transported to the backup
system separately from the key data needed to decrypt it. Storing the keys and encrypted
data on the same media introduces a security vulnerability. If key data is stored on the same
110 IBM System i Security: Protecting i5/OS Data with Encryption

backup media as the encryption data, the key data should be encrypted with another key not
on the media using a KEK.

The authority granted for save files or files replicated for backup is an important aspect of
backup data security. Your backup and recovery strategy should limit access to backup data
to authorized users only.

Sensitive data transported to a backup system by a remote database can be protected using
SSL encryption over the DDM service.

For encrypted data stored on an iASP device that can be switched between systems, the
required keys must be made available on all systems in the domain of the iASP.

9.2.2 Working with encrypted data between multiple systems

Data compression and data translation cannot be performed on encrypted data. For example,
if the backup system has a different CCSID or different date and time format than the primary
system, the data must be translated in its decrypted form. If the data is in an encrypted form,
the data must first be decrypted before compression or translation is performed, then
encrypted again.

Perform regular practice tests of restoring your data from backup in order to prove the
effectiveness of your backup policies.
Chapter 9. Backup considerations 111

112 IBM System i Security: Protecting i5/OS Data with Encryption

Part 3 Implementation of data
encryption

This part provides various implementation scenarios with step-by-step instructions.

Part 3
© Copyright IBM Corp. 2008. All rights reserved. 113

114 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 10. SQL method

SQL provides for encrypting and decrypting data in a simple and convenient manner.
However, SQL only provides a portion of encryption services. For example, functions that
assist with the management of encryption keys are only available using native (non-SQL)
interfaces. Even so, data can be made secure by using the capabilities provided in SQL only.

10
© Copyright IBM Corp. 2008. All rights reserved. 115

10.1 Preparing for encryption

Securing data using encryption introduces new requirements with respect to databases and
applications. Changes to database formats are necessary to accommodate encrypted data.
For a general discussion of database considerations, refer to Chapter 7, “Database
considerations” on page 77. Applications require access to passwords or keys in order to
access encrypted data. For a general discussion of application considerations, refer to
Chapter 8, “Application considerations” on page 97. Here we consider the requirements of
data encryption from the SQL perspective.

10.1.1 Encryption prerequisites

The first step is to identify exactly what data is sensitive and must be encrypted. Then we
determine how the password or keys are made available in order to access the encrypted
data. For example, assume that we have an employee table containing records of employee
information:

CREATE TABLE emp (
employeeId CHAR(7),
ssn CHAR(9)
name VARCHAR(40),
salary NUMERIC(13)

)

We decide to encrypt only the ssn and salary fields using the triple DES encryption algorithm.
For simplicity, we decide to use a single password to encrypt these fields in all records of the
emp table.

10.1.2 Identifying changes to your database

Encrypting data stored in a column (or field) within a DB2 table (or physical file) changes the
definition of the column (or field). Data resulting from encryption is a binary string and
requires the column to be defined as one of the following data types:

� BINARY
� VARBINARY
� CHAR FOR BIT DATA
� VARCHAR FOR BIT DATA
� BLOB

The CCSID value 65535 is used for encrypted data.

The column length (or field length) also changes as a result of encryption.

When using SQL to perform encryption, the length of an existing column increases because
additional bytes are needed not only for the encrypted data, but also to store information
containing attributes of the encryption algorithm and encrypted data (for example, CCSID).
The data stored in these extra bytes allows DB2 for i5/OS to share and exchange encrypted
data with other DB2 server products. A minimum of 8 extra bytes for RC2 encryption or
16 bytes for TDES encryption are needed for these attributes, If the data string is defined as
large object (LOB), BINARY, or VARBINARY, or if any of the data strings, hints, or passwords
have different CCSID values, then 8 additional bytes are required, making 16 extra bytes for
RC2 encryption or 24 extra bytes for TDES encryption.
116 IBM System i Security: Protecting i5/OS Data with Encryption

If a hint is specified along with the password used for encrypting the data, 32 additional bytes
are added to the column length. If no hint is specified, no additional bytes are added to the
encrypted column length for the hint. Finally, the column length is padded to make the entire
column length an even multiple of 8 bytes. So the column length of a column containing
encrypted data is:

data-length + extra-bytes + hint-length + pad

In our example, ssn and salary require that we increase the size and type of these columns in
order to store the encrypted data. Because we are encrypting non-binary data using the
TDES algorithm, 16 extra bytes are required. Assuming our hint size to be 32 (maximum),
then the sizes of our encrypted columns become:

ssn length is
9 + 16 + 32 + pad
57 + 7
64

salary length is
13 + 16 + 32 + pad
61 + 3
64

Therefore, our new table structure is now:

CREATE TABLE empTDES (
employeeId CHAR(7),
ssn CHAR(64) FOR BIT DATA
name VARCHAR(40),
salary CHAR(64) FOR BIT DATA

)

10.1.3 Analyzing impact to performance

Encryption of data that is frequently referenced or used in a lookup operation may result in
slower performance. Encrypting columns (or fields) may also make sorting or searching on
them difficult.

Encryption should be reserved only for data that is personal or sensitive. Minimizing the
columns (or fields) that require encryption reduces the impact to performance greatly. If a
column used as a search key must be encrypted, then encrypting the query’s search value
allows the search to be conducted without first decrypting all the rows of the table. Searching
on an encrypted value is also better for security than having to decrypt all rows of the table to
accomplish the search. However, sorting an encrypted column is not meaningful. The column
must be decrypted to be sorted properly, or an index maintained to preserve the plaintext sort
order.

In our example, ssn and salary are not used primarily for table lookup or for sorting, nor are
they used as an index to another table, so the impact of encryption of these fields to our
application performance should be manageable without significant changes to the structure of
our application.
Chapter 10. SQL method 117

10.2 Encrypting data using an encryption password

Use the SET ENCRYPTION PASSWORD statement to set the default password for the
encryption and decryption functions. The key used by SQL for encrypting and decrypting is
not the password value, but a 128-bit binary value automatically derived from the password
using an MD5 message digest.

The password is type CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC and
must be between 6 and 127 characters in length, or must be an empty string. If an empty
string is specified, the default encryption password is set to no value. For example:

SET ENCRYPTION PASSWORD=’enig1942ma’

We insert the numeric digits in the middle of the string ‘enigma’ in order to make the password
harder to guess. A hacker could use a program to attempt decryption using words from the
dictionary, and could guess the string ‘enigma’ easier than the string ‘enig1942ma’. Also, a
longer password is more secure than a short password. Refer to 3.3.1, “Generating a key
value” on page 28, for more information about forming secure keys.

It is preferable to specify the password using a host variable rather than a string constant so
that access to the source code does not compromise security. For example:

SET ENCRYPTION PASSWORD=:passwordvar

When using a remote relational database, the password specified is sent as plaintext. In
order to protect the supplied password, the communication channel must be secured by
encryption such as SSL to maintain security.

10.2.1 Associating a hint with a password

Use the WITH HINT clause to specify a value that will help to recall the password value when
the password is lost or forgotten.

The hint is type CHAR, VARCHAR, Unicode GRAPHIC, or Unicode VARGRAPHIC, and must
not be greater than 32 characters in length. If an empty string is specified, the default
encryption password hint is set to no value.

If a WITH HINT value is specified, the hint is used as the default during encryption functions.
The hint value is stored together with encrypted data as a reminder of the associated
password. The hint can be retrieved for an encrypted value using the GETHINT function. To
demonstrate, we create an encrypted employee record after assigning a hint value:

CREATE TABLE empTDES (
employeeId CHAR(7),
ssn CHAR(64) FOR BIT DATA
name VARCHAR(40),
salary CHAR(64) FOR BIT DATA

SET ENCRYPTION PASSWORD=’enig1942ma’ WITH HINT=’submarine cipher’

INSERT INTO empTDES VALUES(
‘1000001’,
ENCRYPT_TDES(‘111223333’),
‘ROBERT’,
ENCRYPT_TDES(4000000))
118 IBM System i Security: Protecting i5/OS Data with Encryption

Since the WITH HINT value was the same for encrypting both the ssn and the salary of the
emp record, the GETHINT function returns the same hint value for either of the two encrypted
fields:

SELECT GETHINT(ssn) FROM empTDES
submarine cipher

SELECT GETHINT(salary) FROM empTDES
submarine cipher

It is preferable to assign the WITH HINT value using a host variable rather than a string
constant so that access to the source code does not compromise security. For example:

SET ENCRYPTION PASSWORD=:passwordvar WITH HINT=:hintvar

When using a remote relational database, the hint specified is sent as plaintext. In order to
protect the supplied hint, the communication channel must be secured by encryption, such as
SSL, to maintain security.

10.2.2 Using a password in a view

A simple method to access the decrypted data using a password is with a VIEW:

SET ENCRYPTION PASSWORD=:passwordvar

CREATE VIEW empview(employeeId, ssn, name, salary) AS
SELECT

employeeId,
char(DECRYPT_CHAR(ssn), 9),
name,
char(DECRYPT_CHAR(salary), 13)

FROM empTDES

This convenient approach allows decrypted data to be retrieved when the password is
provided.

Allowing access to the entire table with a single password may be convenient, but may not be
desirable from a security standpoint. Should the single password become compromised, all
records in the table are accessible. Data security must be reviewed carefully when using this
approach to decryption.

10.2.3 Using password and hint as encryption parameters

We have already seen how to use the SET ENCRYTPTION PASSWORD to assign the
password (and hint) for the entire table. We can alternatively supply the password (and hint)
using the SQL built-in encryption function parameters. This method allows us to specify
different passwords (and hints) for each table record.

INSERT INTO empTDES VALUES(
‘1000001’,
ENCRYPT_TDES(‘111223333’,:passwordvar,:hintvar),
‘ROBERT’,
ENCRYPT_TDES(4000000,:passwordvar,:hintvar))

Supplying different passwords for each record in the table could be used to allow a customer
to supply a password and hint for her own account information, for example. Then if the
password is discovered, only a single record is compromised rather than the entire table.
Chapter 10. SQL method 119

10.3 Encrypting data with triggers

We can use triggers to encrypt and decrypt data. A trigger allows writes and updates to be
intercepted for encryption without impact to the applications accessing the database. It does
not matter whether the access to the data is performed by SQL or a native language
application. The trigger performs the same, regardless of the programming language of the
application.

10.3.1 Using classical triggers

Use a BEFORE INSERT trigger to encrypt data from a native WRITE or SQL Insert. First, the
user-defined function GET_PASSWD() is called to get the encryption password for the
employee record. The password is then used to encrypt the sensitive data before it is stored.

CREATE TRIGGER insert_empTDES
BEFORE INSERT ON empTDES

REFERENCING NEW ROW AS n
FOR EACH ROW
BEGIN

DECLARE encrypt_passwd VARCHAR(127);
SET encrypt_passwd = GET_PASSWD(:hintvar);
SET n.ssn = ENCRYPT_TDES(n.ssn, encrypt_passwd);
SET n.salary = ENCRYPT_TDES(n.salary, encrypt_passwd);

END

Use an UPDATE trigger in a similar fashion to encrypt data from a native or SQL UPDATE.

10.3.2 Using Instead Of Triggers

Another type of trigger that may be used is known as an Instead Of Trigger. This type of
trigger may be used over an SQL view to encrypt data for insert, update, and delete
operations.

Instead Of Triggers are useful in reducing the impact of encryption to your applications. The
view takes the place of the unencrypted table, and the Instead of Triggers do the work of
mapping the unencrypted columns to the encrypted ones.

In our example, triggers are created over the view empView in order to insert and update to
table empTDES.

CREATE TRIGGER insert_empView
INSTEAD OF INSERT ON empView
REFERENCING NEW AS n

FOR EACH ROW MODE DB2SQL
INSERT INTO empTDES VALUES(

n.employeeId,
ENCRYPT_TDES(n.ssn, :passwordvar, :hintvar),
n.name,
ENCRYPT_TDES(n.salary, :passwordvar, :hintvar)

)

CREATE TRIGGER update_empView
INSTEAD OF UPDATE ON empView
REFERENCING OLD AS o NEW AS n

FOR EACH ROW MODE DB2SQL
120 IBM System i Security: Protecting i5/OS Data with Encryption

UPDATE empTDES SET
employeeId=n.employeeId,
ssn=ENCRYPT_TDES(n.ssn, :passwordvar, :hintvar),
name=n.name,
salary=ENCRYPT_TDES(n.salary, :passwordvar, :hintvar)

WHERE employeeId=o.employeeId

10.4 Using user-defined functions (UDFs) with encrypted data

Additional capabilities not available in SQL statements can be provided by using user-defined
functions. We can use the CREATE FUNCTION statement to provide functions that may be
referenced in SQL statements.

In this example we show how to create a user-defined function in the SQL language in order
to search for the employee record matching the value of ssnIndex. The function encrypts the
ssnIndex value using the currently set encryption password and searches on the encrypted
ssn field of the table to return the employeeId of the matching record. This method is more
efficient and also more secure than decrypting the ssn field of each record in the table and
comparing the plaintext values because in this method the encryption function only executes
once on the ssnIndex. The encryption password value must be set before the function is
called because the SET ENCRYPTION PASSWORD statement cannot be performed inside
a user-defined function. If we wished to set the password as a statement within the routine,
we could create the routine as a stored procedure rather than a user-defined function.

CREATE FUNCTION LIB01+/FIND_SSN(
ssnIndex CHAR(9))
RETURNS CHAR(7)
LANGUAGE SQL
SPECIFIC FIND_SSN NOT DETERMINISTIC
NO EXTERNAL ACTION READS SQL DATA
RETURNS NULL ON NULL INPUT
ALLOW PARALLEL
RETURN(
SELECT employeeId FROM empTDES
WHERE ssn=ENCRYPT_TDES(ssnIndex)
)

In 10.3.1, “Using classical triggers” on page 120, we indicated that a user-defined function
could be written to return a password value, which is then used to encrypt or decrypt record
data. In this way the details of managing the password can be separated from the application
code working with the encrypted data.

In this example we provide two user-defined functions written in the C programming
language. The GET_PASSWD function accepts the hint value as a parameter and uses it as
a label to retrieve the associated password from the HINTLKUP table. The PUT_PASSWD
function is used to save a new password along with the associated hint in the HINTLKUP
table. These user-defined functions use the C language encryption and decryption functions
so that the password is stored in the HINTLKUP table as ciphertext and not as plaintext data.

Note: User-defined functions that reference SQL built-in functions for encryption and
decryption must be defined as NOT DETERMINISTIC. This ensures that if a SET
ENCRYPTION PASSWORD statement changes the password, the new password value
will be used by the UDF.
Chapter 10. SQL method 121

Note that since we are using the native encryption and decryption functions in C instead of
the SQL built-in functions to do our enciphering, we need not add the extra bytes for attributes
(for example, CCSID), but only pad to the next 8-byte boundary when sizing the ciphertext
buffer. The GET_PASSWD and PUT_PASSWD user-defined functions reference a key from
the keystore file TDESKEYS when encrypting and decrypting the password. We show how
the key and the keystore file were generated later in 10.5, “Encrypting with stored procedures”
on page 127

The HINTLKUP table is described below in DDS. This data is accessed in our C language
UDF as a physical file, but can also be accessed from SQL statements as a table. The HINT
field contains the plaintext hint and serves as the file index key. The PASSWD field contains
ciphertext encrypted with the TDES algorithm. The PASSWDIV field is used to store the
Initialization Vector, and is needed to decrypt the PASSWD ciphertext. The KEYLABEL field
identifies the encryption key in the TDESKEYS keystore used to encipher the PASSWD field.

 A R RFHINTLKUP TEXT('Hint Lookup Record')
 A*
 A HINT 32A TEXT(' Hint for password')
 A*
 A PASSWD 128A TEXT('Password')
 A*
 A PASSWDIV 8A TEXT('Password IVector')
 A*
 A KEYLABEL 32A TEXT('Key Label')
 A*
 A K HINT

Do not forget to use object authorities to restrict access to this table in order to ensure that the
password information it contains is secure. Refer to 5.4, “Establishing a secure keystore
environment” on page 65, for details on securing objects containing key information.

The C code that implements the user-defined functions is shown below. Since the
GET_PASSWD function decrypts the password using whatever key is identified by the label
value KEYLABEL from the HINTLKUP table, there is no need to re-encrypt the password
entries when the key used in PUT_PASSWD changes, so long as the former key remains in
the TDESKEYS keystore identified with its label. Before a key from the keystore is deleted or
destroyed, all the records in HINTLKUP (and any other tables referencing the key label) for
that key should be decrypted and encrypted using the newest key.

/***/
/* */
/* CRTCMOD MODULE(LIB01/UDF_PASSWD) */
/* SRCFILE(LIB01/QCSRC) */
/* TEXT('Password UDF functions') */
/* OUTPUT(*PRINT) OPTION(*SHOWINC) DBGVIEW(*LIST) */
/* */
/* CRTSRVPGM SRVPGM(LIB01/UDF_PASSWD) */
/* MODULE(LIB01/UDF_PASSWD) */
/* EXPORT(*ALL) ACTGRP(*CALLER) */
/* */
/***/

#include <stdio.h> /* Standard I/O library */
#include <stdlib.h> /* Standard C library */
#include <recio.h> /* Record I/O library */
#include <string.h> /* String library */
122 IBM System i Security: Protecting i5/OS Data with Encryption

#include <qusec.h> /* Error code structure */
#include <stddef.h> /* Standard C library */
#include <sqludf.h> /* SQL User-Defined Functions */
#include <qc3cci.h> /* Crypto Common library */
#include <qc3prng.h> /* Crypto Pseudo-Random library */
#include <qc3dtaen.h> /* Crypto Encrypt Data library */
#include <qc3dtade.h> /* Crypto Decrypt Data library */

#pragma mapinc("HINTLKUP","HINTLKUP(*ALL)","both key","d z _P",,"DDS")
#include "HINTLKUP"

#define MAX_HINT 32
#define MAX_PASSWD 127
#define MAX_CIPHER 128

_RFILE *fp_Hintlkup = NULL;

/***/
/* */
/* Function: */
/* GET_PASSWD */
/* */
/* Parameters: */
/* hint VARCHAR(32) User supplied hint */
/* */
/* Returns: */
/* passwd VARCHAR(127) Password value associated with hint */
/* */
/* Description: */
/* This function receives the hint parameter and returns an */
/* associated password from file HINTLKUP. */
/* */
/***/
void SQL_API_FN GET_PASSWD (
 SQLUDF_VARCHAR hint[MAX_HINT+1],
 SQLUDF_VARCHAR passwd[MAX_PASSWD+1],
 SQLUDF_NULLIND *hintInd,
 SQLUDF_NULLIND *passwdInd,
 SQLUDF_TRAIL_ARGS)
{
 Qus_EC_t errCode; /* Error code structure */
 _RIOFB_T *iofb_Hintlkup;
 DDS_RFHINTLKUP_both_t rfHintlkup;
 DDS_RFHINTLKUP_key_t rfHintlkup_key;
 Qc3_Format_ALGD0200_T algDesc;
 Qc3_Format_KEYD0400_T keyDesc;
 char csp = Qc3_Any_CSP;
 int maxPasswdLen;
 int cipherLen;
 int passwdLen;

 memset(&errCode, 0, sizeof(errCode));
 memset(passwd, '\0', MAX_PASSWD + 1);
 passwdLen = 0;
 maxPasswdLen = MAX_PASSWD + 1;
Chapter 10. SQL method 123

 cipherLen = MAX_CIPHER;

 if (fp_Hintlkup == NULL)
 {
 fp_Hintlkup = _Ropen("HINTLKUP", "rr+");
 if (fp_Hintlkup == NULL)
 {
 printf("Open HINTLKUP failed\n");
 return;
 }
 }

 memset(rfHintlkup_key.HINT, '\0', sizeof(rfHintlkup_key.HINT));
 memcpy(rfHintlkup_key.HINT, hint, strlen(hint));
 iofb_Hintlkup = _Rreadk(fp_Hintlkup, &rfHintlkup, sizeof(rfHintlkup),
 __DFT | __NO_LOCK, &rfHintlkup_key, sizeof(rfHintlkup_key));
 if (iofb_Hintlkup->num_bytes != sizeof(rfHintlkup))
 { /* Read Failed */
 printf("Read HINTLKUP failed, hint value %s not found\n", hint);
 }
 else
 { /* Read Successful */

 /* Prepare for passwd Decryption using TDES Algorithm */

 /* Algorithm Description */
 memset(&algDesc, '\0', sizeof(algDesc));
 algDesc.Block_Cipher_Alg = Qc3_TDES;
 algDesc.Block_Length = 8;
 algDesc.Mode = Qc3_CBC;
 algDesc.Pad_Option = Qc3_Pad_Char;
 algDesc.Pad_Character = '\0';
 algDesc.MAC_Length = 0;
 algDesc.Effective_Key_Size = 0;
 memcpy(&algDesc.Init_Vector[0], &rfHintlkup.PASSWDIV[0], 8);

/* Key Description */
 memset(&keyDesc, '\0', sizeof(keyDesc));
 memcpy(&keyDesc.Key_Store[10], "JOHNC ", 10);
 memcpy(&keyDesc.Key_Store[0], "TDESKEYS ", 10);
 memcpy(&keyDesc.Record_Label[0], &rfHintlkup.KEYLABEL[0], 32);

 /* Decrypt PASSWD ciphertext into passwd plaintext */
 Qc3DecryptData(&rfHintlkup.PASSWD[0], &cipherLen,
 (char *) &algDesc, Qc3_Alg_Block_Cipher,
 (char *) &keyDesc, Qc3_Key_KSLabel,
 &csp, NULL,
 &passwd[0], &maxPasswdLen,
 &passwdLen, &errCode);
 }
if (errCode.Bytes_Available != 0)
 {
 printf("Data Decryption of password failed, Exception_Id = %.7s\n",
 errCode.Exception_Id);
 return;
124 IBM System i Security: Protecting i5/OS Data with Encryption

 }

 return;

}

/***/
/* */
/* Function: */
/* PUT_PASSWD */
/* */
/* Parameters: */
/* hint VARCHAR(32) User supplied hint */
/* passwd VARCHAR(127) Password value associated with hint */
/* */
/* Returns: */
/* rsltlen DOUBLE CAST TO INT Encrypted password length */
/* */
/* Description: */
/* This function stores the hint parameter and associated */
/* password in file HINTLKUP and returns the length of the */
/* encrypted password. */
/* */
/***/
void SQL_API_FN PUT_PASSWD (
 SQLUDF_VARCHAR hint[MAX_HINT+1],
 SQLUDF_VARCHAR passwd[MAX_PASSWD+1],
 SQLUDF_DOUBLE *rsltlen,
 SQLUDF_NULLIND *hintInd,
 SQLUDF_NULLIND *passwdInd,
 SQLUDF_NULLIND *rsltlenInd,
 SQLUDF_TRAIL_ARGS)
{
 Qus_EC_t errCode; /* Error code structure */
 _RIOFB_T *iofb_Hintlkup;
 DDS_RFHINTLKUP_both_t rfHintlkup;
 DDS_RFHINTLKUP_key_t rfHintlkup_key;
 char PRNType = Qc3PRN_TYPE_NORMAL;
 char PRNParity = Qc3PRN_NO_PARITY;
 Qc3_Format_ALGD0200_T algDesc;
 Qc3_Format_KEYD0400_T keyDesc;
 char csp = Qc3_Any_CSP;
 int passwdLen;
 int maxCipherLen = sizeof(rfHintlkup.PASSWD);
 int cipherLen;

 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);
 *rsltlen = 0;
 cipherLen = 0;

 if (fp_Hintlkup == NULL)
 {
 fp_Hintlkup = _Ropen("HINTLKUP", "rr+");
 if (fp_Hintlkup == NULL)
Chapter 10. SQL method 125

 {
 printf("Open HINTLKUP failed\n");
 return;
 }
 }

 memset(rfHintlkup.HINT, '\0', MAX_HINT);
 memcpy(rfHintlkup.HINT, hint, strlen(hint));

 /* Prepare to Encrypt passwd with TDES */
 /* Pad password with NULLS and change length to encrypt maximum password */
 passwdLen = strlen(passwd);
 memset(&passwd[passwdLen], '\0', MAX_PASSWD + 1 - passwdLen);
 passwdLen = MAX_PASSWD;
 memset(rfHintlkup.PASSWD, '\0', MAX_CIPHER);

 /* Algorithm Description */
 memset(&algDesc, '\0', sizeof(algDesc));
 algDesc.Block_Cipher_Alg = Qc3_TDES;
 algDesc.Block_Length = 8;
 algDesc.Mode = Qc3_CBC;
 algDesc.Pad_Option = Qc3_Pad_Char;
 algDesc.Pad_Character = '\0';
 algDesc.MAC_Length = 0;
 algDesc.Effective_Key_Size = 0;
 /* Generate Random Initialization Vector for PASSWD field */
 Qc3GenPRNs(&rfHintlkup.PASSWDIV[0], 8, PRNType, PRNParity, &errCode);
 if (errCode.Bytes_Available != 0)
 { /* Pseudo-Random Number Generation Failed */
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }
 memcpy(&algDesc.Init_Vector[0], &rfHintlkup.PASSWDIV[0], 8);

 /* Key Description */
 memset(&keyDesc, '\0', sizeof(keyDesc));
 memcpy(&keyDesc.Key_Store[10], "KYLIB ", 10);
 memcpy(&keyDesc.Key_Store[0], "TDESKEYS ", 10);
 memset(&keyDesc.Record_Label[0], '\0', 32);
 memcpy(&keyDesc.Record_Label[0], "PASSWDKEY.1", 11);

 memcpy(rfHintlkup.KEYLABEL, &keyDesc.Record_Label[0],
 sizeof(keyDesc.Record_Label));
 Qc3EncryptData(&passwd[0], &passwdLen, Qc3_Data,
 (char *)&algDesc, Qc3_Alg_Block_Cipher,
 (char *)&keyDesc, Qc3_Key_KSLabel,
 &csp, NULL,
 &rfHintlkup.PASSWD[0], &maxCipherLen,
 &cipherLen, &errCode);
 if (errCode.Bytes_Available != 0)
 {
 printf("Data Encryption of password failed, Exception_Id = %.7s\n",
 errCode.Exception_Id);
 return;
 }
126 IBM System i Security: Protecting i5/OS Data with Encryption

 iofb_Hintlkup = _Rwrite(fp_Hintlkup, &rfHintlkup, sizeof(rfHintlkup));
 if (iofb_Hintlkup->num_bytes != sizeof(rfHintlkup))
 {
 printf("Write HINTLKUP failed\n");
 }
 else
 {
 *rsltlen = cipherLen;
 }
 return;

}

Once the service programs are created, the UDFs are then registered with SQL. The
functions can then be invoked within SQL statements.

The user-defined functions are registered in SQL using the following statements:

CREATE FUNCTION LIB01/GET_PASSWD(
hint VARCHAR(32))
RETURNS VARCHAR(127)
LANGUAGE C
PARAMETER STYLE SQL
SPECIFIC GET_PASSWD
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME 'LIB01/UDF_PASSWD(GET_PASSWD)'

CREATE FUNCTION LIB01/PUT_PASSWD(
hint VARCHAR(32),
passwd VARCHAR(127))
RETURNS INT CAST FROM FLOAT
LANGUAGE C
PARAMETER STYLE SQL
SPECIFIC PUT_PASSWD
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME 'LIB01/UDF_PASSWD(PUT_PASSWD)'

10.5 Encrypting with stored procedures

Stored procedures can be used to enhance and simplify application operations.
Chapter 10. SQL method 127

In this example, we use a stored procedure in the SQL language to show how to retrieve and
set the encryption password, then encrypt the data for record update in one application
operation. We use the GETHINT built-in function to retrieve the hint associated with the
password that was used to encrypt the existing record. The hint is passed to the
GET_PASSWD user-defined function, which uses the hint as a label to return the
corresponding encryption password. The procedure then sets the encryption password with
the value returned from the UDF function, and updates the record with the newSalary data
encrypted using the password.

CREATE PROCEDURE LIB01/UPDATE_SALARY(
employeeIdKey CHAR(7),
newSalary NUMERIC(13))
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN
DECLARE hint VARCHAR(32);
DECLARE passwd VARCHAR(127);
SELECT GETHINT(salary) INTO hint
 FROM empTDES WHERE employeeId = employeeIdKey;
SET passwd = GET_PASSWD(hint);
SET ENCRYPTION PASSWORD=passwd WITH HINT hint;
UPDATE empTDES
 SET salary = ENCRYPT_TDES(CHAR(newSalary))
 WHERE employeeId = employeeIdKey;
END

Like external UDFs, stored procedures can be created using native languages and called
from SQL once they are registered.

We show with this example a stored procedure that is used to generate an encryption key
and save the key in the TDESKEYS keystore file. The UDFs GET_PASSWD and
PUT_PASSWD use this key when encrypting and decrypting data in the HINTLKUP table.
This key could be shared by other programs or applications as well.

Notice that the key value itself is not observable either by the user or the programmer in this
instance. Rather, the key is identified and referenced by a label maintained in the keystore
and the HINTLKUP table data.

We assume that the system administrators have already generated a master key 1, which is
referenced when creating the TDESKEYS keystore. For information about creating master
keys, refer to 5.1.1, “Master keys” on page 48.

/***/
/* */
/* CRTCMOD MODULE(LIB01/CRT_TDES) */
/* SRCFILE(LIB01/QCSRC) */
/* TEXT('Create TDES Encryption Key') */
/* OUTPUT(*PRINT) OPTION(*SHOWINC) DBGVIEW(*LIST) */
/* */
/* CRTBNDC PGM(LIB01/CRT_TDES) */
/* SRCFILE(LIB01/QCSRC) SRCMBR(CRT_TDES) */
/* OUTPUT(*PRINT) OPTION(*SHOWINC) DBGVIEW(*LIST) */
/* REPLACE(*YES) */
/* */
/***/

#include <stdio.h> /* Standard I/O library */
128 IBM System i Security: Protecting i5/OS Data with Encryption

#include <stdlib.h> /* Standard C library */
#include <recio.h> /* Record I/O library */
#include <string.h> /* String library */
#include <qusec.h> /* Error code structure */
#include <stddef.h> /* Standard C library */
#include <qc3cci.h> /* Crypto Common library */
#include <qc3crtks.h> /* Crypto Create Key Store */
#include <qc3krgen.h> /* Crypto Generate Key Record */
#include <sys/stat> /* Get File Information */

#define RCOK 0
#define RCERROR -1
#define KEYSTORELIB "KYLIB "
#define KEYSTORENAME "TDESKEYS "
/***/
/* */
/* Procedure: */
/* CRT_TDES */
/* */
/* Parameters: */
/* In label CHAR(32) Key identification label */
/* */
/* Description: */
/* This program generates a TDES encryption key and stores */
/* it with the associated label in the keystore file TDESKEYS. */
/* If the keystore file does not exist, it is created under */
/* Master Encryption Key 1. */
/* */
/***/
int main (int argc, char *argv[])
{
 /* Error codes */
 int rc; /* Return code, 0 = successful */
 /* -1 = error */

 Qus_EC_t errCode; /* Error code structure */

 /* Parameters */
 char keyLabel[32]; /* Input, label id of key */

 /* Keystore Information */
 int nameIndex;
 char keystoreLib[10];
 char keystoreName[10];
 char keystorePath[41];
 char keystoreQualName[20];
 struct stat fileInfo;

 /* Create Keystore Parameters */
 int masterKeyId;
 char keystoreAuth[10];
 char keystoreDesc[50];

 /* Generate Key Record Parameters */
 int krecType;
Chapter 10. SQL method 129

 int krecSize;
 int krecExponent;
 int krecDisallow;
 char krecServProv;
 char krecDevName[10];

 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);
 /* Assign parameter to local variable */
 strncpy(keyLabel, argv[1], sizeof(keyLabel));

 /* Initialize keystore Qualified File name */
 memcpy(&keystoreQualName[0], KEYSTORENAME, sizeof(keystoreName));
 memcpy(&keystoreQualName[10], KEYSTORELIB, sizeof(keystoreLib));

 /* Initialize keystore Path name */
 memcpy(keystoreLib, KEYSTORELIB, sizeof(keystoreLib));
 nameIndex = sizeof(keystoreLib) - 1;
 while ((nameIndex >= 0) && (keystoreLib[nameIndex] == ' '))
 keystoreLib[nameIndex--] = '\0';
 memcpy(keystoreName, KEYSTORENAME, sizeof(keystoreLib));
 nameIndex = sizeof(keystoreName) - 1;
 while ((nameIndex >= 0) && (keystoreName[nameIndex] == ' '))
 keystoreName[nameIndex--] = '\0';
 memset(keystorePath, '\0', sizeof(keystorePath));
 sprintf(keystorePath, "/QSYS.LIB/%.10s.LIB/%.10s.FILE",
 keystoreLib, keystoreName);

 /* Check if keystore exists */
 if (0 != stat(&keystorePath[0], &fileInfo))
 { /* Keystore not found, create it */
 masterKeyId = 1;
 memcpy(keystoreAuth, "*EXCLUDE ", sizeof(keystoreAuth));
 memset(keystoreDesc, ' ', sizeof(keystoreDesc));
 memcpy(keystoreDesc, "Key store for TDES keys", 23);

 Qc3CreateKeyStore(keystoreQualName, &masterKeyId,
 keystoreAuth, keystoreDesc, &errCode);
 if (errCode.Bytes_Available != 0)
 {
 printf("CRT_TDES: Create keystore failed, Exception_Id = %.7s\n",
 errCode.Exception_Id);
 rc = RCERROR;
 return rc;
 }
 }

 /* Create TDES key */
 krecType = Qc3_TDES;
 krecSize = 24;
 krecExponent = 0; /* Not used for TDES */
 krecDisallow = 0; /* No functions disallowed */
 krecServProv = Qc3_Any_CSP; /* Software or Hardware */
 memset(krecDevName, ' ', sizeof(krecDevName)); /* Not used for TDES */
 Qc3GenKeyRecord(keystoreQualName, keyLabel, &krecType, &krecSize,
130 IBM System i Security: Protecting i5/OS Data with Encryption

 &krecExponent, &krecDisallow, &krecServProv, krecDevName, &errCode);
 if (errCode.Bytes_Available != 0)
 {
 printf("CRT_TDES: Create key record failed, Exception_Id = %.7s\n",
 errCode.Exception_Id);
 rc = RCERROR;
 return rc;
 }

 rc = RCOK;
 return rc;

}
Chapter 10. SQL method 131

132 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 11. Cryptographic Services APIs
method

The Cryptographic Services APIs perform cryptographic function within i5/OS or on the 2058
Cryptographic Accelerator.

The Cryptographic Services APIs include:

� Encryption and Decryption APIs
� Authentication APIs
� Key Generation APIs
� Key Management APIs
� Pseudorandom Number Generator APIs
� Cryptographic Context APIs

A sample application utilizing these APIs is provided in this Redbooks publication. This
chapter provides detailed information about that sample application and its scenario.

11
© Copyright IBM Corp. 2008. All rights reserved. 133

11.1 Scenario description

Using a practical scenario, we walk through the process of using the Cryptographic Services
APIs to protect private data.

We have an application that processes customer data and, due to the sensitive nature of
some of the data elements, we have decided to use encryption. The basic structure of the
scenario is outlined in Figure 11-1.

Figure 11-1 Cryptographic Services APIs scenario description

11.1.1 Setting up a master key

The first step in the application process is to create a master key. The master key is used to
encrypt a data encryption key in a keystore file.

Source System Target System

Master

Key

Master

Key

Keystore

Key

Keystore

Key

Master

Key

Master

Key

Keystore

Key

Keystore

Key

Keystore

Key

Keystore

Key ENCDATA ENCDATA

Application

(ENcrypt)

Application

(DEcrypt)
134 IBM System i Security: Protecting i5/OS Data with Encryption

The sample application provides a CL command named Set Master Key (SET_MSTR_K).
This command performs the creation of the master key. The process of creating the master
key using this command is illustrated in Figure 11-2.

Figure 11-2 Creating a master key using SET_MSTR_K

11.1.2 Setting up a symmetric data encryption key

After the master key is created, we create a symmetric data encryption key. A symmetric key
is the type of key where the same key is used to perform both the encryption and decryption
of data. Although it may seem slightly confusing, the term data encryption key refers to a key
that has the potential of performing encryption or decryption functions on data.

The data encryption key, often referred to simply as the key, can be stored in a special type of
i5/OS object called a keystore file. All key values in a keystore file are encrypted under a
master key. The data encryption key record in the keystore file is referenced by a unique
name called a label. The key record also includes information about the functional
capabilities of the key. The key that we create will be configured to allow it perform both
encryption and decryption functions.

Our scenario entails an application that uses the data encryption key to encrypt user-supplied
information and store the result in a file. There is also a second application on a separate
server that is permitted to only decrypt data. Because of this, we also create a second
keystore file. In the second keystore file, we store a duplicate of the data encryption key.

The reason for the requirement of a second keystore file is that we need a key with the same
key label but different functional capabilities (we are going to permit this key to only perform
decryption functions). The second keystore is copied over to the target system for use by the
decrypting application.

MSTRKVV
Audit File

Master Key

SET_MSTR_K

program

SET_MSTR_K
CL command

Note: If the second application was permitted to perform both encryption and decryption,
then we would only require one keystore file with a single key record. Alternatively, if the
second application referenced the decrypting-only key by a different label, then we could
store it in the same keystore file as the full-function key.
Chapter 11. Cryptographic Services APIs method 135

The sample application also provides a CL command named Generate Symmetric Key
(GEN_SYMKEY). This command performs the creation of the two keystore files and the two
copies of the symmetric key. The process of creating the symmetric key using the command
is depicted in Figure 11-3.

Figure 11-3 Creating a symmetric key using GEN_SYMKEY

11.1.3 Encrypting data

Using the encryption-capable data encryption key, the application will take user-supplied data
and encrypt it before storing it in a database file (ENCDATA).

INFOFILE
Audit File

Data Encryption

Key

GEN_SYMKEY

program

GEN_SYMKEY
CL command

Data Encryption

Key (Decrypt)

KEYFILES KEYFILET
136 IBM System i Security: Protecting i5/OS Data with Encryption

The sample application also provides a CL command named Set Customer Data
(SET_DATA). This command performs the encryption of data. The process of encrypting the
customer data using the command is depicted in Figure 11-4.

Figure 11-4 Encrypting customer data using SET_DATA

11.1.4 Decrypting data

Now that the data includes some ciphertext, we need a mechanism to retrieve the plaintext
again.

Depending on whether the decryption is going to take place on the source or on the target
system, we have different procedures.

Decryption of data on source system
We use this scenario if we want to encrypt/decrypt the secret data in the database file on the
same system.

Decryption of data on target system
The difference from decrypting on the source system comes down to the key maintenance.
The decrypting application must have access to the keystore file that contains the keys used
to encrypt the secret information in the customer’s data.

After the database file and the keystore file containing the decrypting-only key are transferred
across a secure channel (for example, SSL or Secure FTP) to the target system, we can take
the ciphertext and return it to its plaintext state.

KEYFILES

Data Encryption

Key

ENCDATA

SET_DATA
ENC_DATA

SET_DATA CL
commandMaster Key
Chapter 11. Cryptographic Services APIs method 137

11.1.5 Scenario analysis and summary of APIs used

Figure 11-5 illustrates the sample application provided for this chapter. A detailed description
of this diagram is provided in following sections.

Figure 11-5 Scenario diagram

The APIs used by the scenario application
Our scenario shows you how to use several APIs, including:

� Encryption/Decryption APIs

These APIs allow you to transform information into unintelligible data, thus allowing you to
store sensitive data more securely. They also allow you to transform the unintelligible data
back into human readable form.

� Authentication APIs

The authentication APIs help you ensure that the data has not been altered.

Customer system Decryption data on the Target system

Database file
ENCDATA

FNAME LNAME IV64 ENC64 KLABEL KSFILE Time Hash64InfoTarget Key Store file
KEYFILET

Used keykey encrypted under MK#1 disall "D"Label_01

GET_DATA ENCDATA(R7399_API/ENCDATA)
FNAME(Eva)
LNAME(Vorisek)

>
 SecureData = strc prst skrz
 Press ENTER to end terminal session.

MK #1

Development system Encryption Data on the Source system

Database file
ENCDATA

FNAME IV64 ENC64 KLABEL KSFILE Time Hash64Info

DATA are written to ENCDATA file

Source Key Store file
KEYFILES

SET_DATA KEYLABEL(LABEL_01)
KEYFILES(R7399_APIKEYFILES)
ENCDATA(R7399_API/ENCDATA)
FNAME(Eva)
LNAME(Vorisek)
ADRES('U opileho pianisty 909')
CITY(Prague)
COUNTRY('Czech Republic')
STATE(CZ)
ZIP(16100)
PHONE(11111)
SSN('strc prst skrz')

key encrypted under MK #8 disall "0"Label_01

MK #8

Secret data

Used key

LNAME

Random Number Secret data hash

iSeries

iSeries

Random Number

Random Number Secret data hashRandom Number
138 IBM System i Security: Protecting i5/OS Data with Encryption

� Key Management APIs

These APIs allow you to clear, load, and set master keys, as well as generate keys and
create special database files called keystores, used for storing cryptographic keys.

� Pseudorandom Number Generator API

This API is used to generate a random binary string that can be used for many purposes,
such as an Initialization Vector (IV) for the Encryption/Decryption APIs.

� Cryptographic context APIs

These APIs allow you to temporarily store the key and algorithm parameters to avoid
repeated retrieval during subsequent cryptographic operations, and to maintain the state
of the operation when performed over multiple calls.

We also show how to perform the translation process for keys encrypted under the master
key, when the master key is changed.

11.2 Scenario application setup

Before we can use the application, we need to create the application objects for the various
functions performed by the application. All programs and their source code referenced in this
chapter are created and available from the IBM Redbooks Web site described in Appendix A,
“Additional material” on page 281.

11.2.1 Sample application download and initial setup

All required objects, such as programs, commands, and their source code, are stored in the
library R7399_API.

1. Download the save file R7399_API.savf of the library R7399_API from the Web site as
described in Appendix A, “Additional material” on page 281.

2. The initial setup for our scenario is:

a. Restore the library R7399_API with the command:

RSTLIB SAVLIB(R7399_API) DEV(*SAVF) SAVF(QGPL/R7399_API)

b. Add this library to the library list with the command:

ADDLIBLE R7399_API

11.2.2 Creating commands for sample application scenario

As part of the sample application, several commands are provided to simplify the invocation
of the various cryptographic APIs. The following sections provide set-by-step guides for
creating these commands.

Master key creation (SET_MSTR_K)
To build this command, create the following objects:

1. Physical file MSTRKVV to hold the key validation values:

CRTPF FILE(R7399_API/MSTRKVV) SRCFILE(R7399_API/QDDSSRC) SRCMBR(MSTRKVV)
GENLVL(20) FLAG(0) FILETYPE(*DATA) MBR(*FILE) TEXT(*SRCMBRTXT)
Chapter 11. Cryptographic Services APIs method 139

2. Command SET_MSTR_K:

CRTCMD CMD(R7399_API/SET_MSTR_K) PGM(R7399_API/SET_MSTR_K)
VLDCKR(R7399_API/SSL_TEST) SRCFILE(R7399_API/QCMDSRC) SRCMBR(SET_MSTR_K)

3. Command validation program SSL_TEST:

CRTBNDCL PGM(R7399_API/SSL_TEST) SRCFILE(R7399_API/QCLSRC) SRCMBR(SSL_TEST)

4. ILE modules used by the command processing program:

a. SET_MSTR_K is the main command-processing program:

CRTCMOD MODULE(R7399_API/SET_MSTR_K) SRCFILE(R7399_API/QCSRC)

b. BASE64_COD converts data from/to a binary to/from Base64 format:

CRTCMOD MODULE(R7399_API/BASE64_COD) SRCFILE(R7399_API/QCSRC)

c. GETTIME retrieves the system time stamp (for example,
2007-05-17-20.16.31.516000):

CRTRPGMOD MODULE(R7399_API/GETTIME) SRCFILE(R7399_API/QRPGSRC)

d. RTVINF retrieves job information:

CRTCLMOD MODULE(R7399_API/RTVINF) SRCFILE(R7399_API/QCLSRC)

5. Command processing program SET_MSTR_K:

CRTPGM PGM(R7399_API/SET_MSTR_K) MODULE(R7399_API/SET_MSTR_K
R7399_API/BASE64_COD R7399_API/GETTIME R7399_API/RTVINF)

Alternative method: Create a program
The above steps create a command, SET_MSTR_K. If you want to achieve the same goal in
a program way, you can create a program, CRT_MK, instead.To do this:

1. Create CL program CRT_MK:

CRTBNDCL PGM(R7399_API/CRT_MK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_MK) TEXT(*SRCMBRTXT)

2. Start this program:

CALL CRT_MK

Symmetric key creation (GEN_SYMKEY)
To build this command, create the following objects:

1. Physical file INFOFILE:

CRTPF FILE(R7399_API/INFOFILE) SRCFILE(R7399_API/QDDSSRC) SRCMBR(INFOFILE)

2. Command GEN_SYMKEY:

CRTCMD CMD(R7399_API/GEN_SYMKEY) PGM(*LIBL/GEN_SYMKEY)
SRCFILE(R7399_API/QCMDSRC) SRCMBR(GEN_SYMKEY)

3. ILE modules used by the command processing program:

a. GEN_SYMKEY is the main command-processing program:

CRTCMOD MODULE(R7399_API/GEN_SYMKEY) SRCFILE(R7399_API/QCSRC)

b. BASE64_COD converts data from/to a binary to/from Base64 format:

CRTCMOD MODULE(R7399_API/BASE64_COD) SRCFILE(R7399_API/QCSRC)

c. GETTIME retrieves the system time stamp (for example,
2007-05-17-20.16.31.516000):

CRTRPGMOD MODULE(R7399_API/GETTIME) SRCFILE(R7399_API/QRPGSRC)
140 IBM System i Security: Protecting i5/OS Data with Encryption

d. RTVINF retrieves job information:

CRTCLMOD MODULE(R7399_API/RTVINF) SRCFILE(R7399_API/QCLSRC)

4. Command processing program GEN_SYMKEY:

CRTPGM PGM(R7399_API/GEN_SYMKEY) MODULE(R7399_API/GEN_SYMKEY
R7399_API/BASE64_COD R7399_API/GETTIME R7399_API/RTVINF)

Alternative method: Create a program
The above steps create a command, GEN_SYMKEY. If you want to achieve the same goal in
a program way, you can create a program, CRT_SK, instead. To do this:

1. Create CL program CRT_SK:

CRTBNDCL PGM(R7399_API/CRT_SK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_SK) TEXT(*SRCMBRTXT)

2. Start this program:

CALL CRT_SK

Encrypt and store data (SET_DATA)
To build this command, create the following objects:

1. The physical file ENCDATA stores the encrypted data:

CRTPF FILE(R7399_API/ENCDATA) SRCFILE(R7399_API/QDDSSRC) SRCMBR(ENCDATA)
GENLVL(20) FLAG(0) FILETYPE(*DATA)

2. Command SET_DATA:

CRTCMD CMD(R7399_API/SET_DATA) PGM(R7399_API/SET_DATA)
SRCFILE(R7399_API/QCMDSRC) SRCMBR(SET_DATA)

3. Command-processing program SET_DATA:

CRTBNDCL PGM(R7399_API/SET_DATA) SRCFILE(R7399_API/QCLSRC) SRCMBR(SET_DATA)

4. ILE modules used by the ENC_DATA program:

a. ENC_DATA performs the main data encryption functions:

CRTCMOD MODULE(R7399_API/ENC_DATA) SRCFILE(R7399_API/QCSRC)

b. BASE64_COD converts data from/to a binary to/from Base64 format:

CRTCMOD MODULE(R7399_API/BASE64_COD) SRCFILE(R7399_API/QCSRC)

c. GETTIME retrieves the system time stamp (for example,
2007-05-17-20.16.31.516000):

CRTRPGMOD MODULE(R7399_API/GETTIME) SRCFILE(R7399_API/QRPGSRC)

5. Program ENC_DATA performs the main data encryption functions:

CRTPGM PGM(R7399_API/ENC_DATA) MODULE(R7399_API/ENC_DATA R7399_API/BASE64_COD
R7399_API/GETTIME)

Alternative method: Create a program
The above steps create a command, SET_DATA. If you want to achieve the same goal in a
program way, you can create a program, CRT_SET, instead. To do this:

1. Create CL program CRT_SET:

CRTBNDCL PGM(R7399_API/CRT_SET) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_SET) TEXT(*SRCMBRTXT)
Chapter 11. Cryptographic Services APIs method 141

2. Start this program:

CALL CRT_SET

Retrieve encrypted data (GET_DATA)
To build this command, create the following objects:

1. Command GET_DATA:

CRTCMD CMD(R7399_API/GET_DATA) PGM(*LIBL/GET_DATA) SRCFILE(R7399_API/QCMDSRC)
SRCMBR(GET_DATA)

2. Command processing program GET_DATA:

CRTBNDCL PGM(R7399_API/GET_DATA) SRCFILE(R7399_API/QCLSRC) SRCMBR(GET_DATA)

3. ILE modules used by the DEC_DATA program:

a. DEC_DATA performs the main data decryption function:

CRTCMOD MODULE(R7399_API/DEC_DATA) SRCFILE(R7399_API/QCSRC)

b. BASE64_COD converts data from/to a binary to/from Base64 format:

CRTCMOD MODULE(R7399_API/BASE64_COD) SRCFILE(R7399_API/QCSRC)

c. GETTIME retrieves the system time stamp (for example,
2007-05-17-20.16.31.516000):

CRTRPGMOD MODULE(R7399_API/GETTIME) SRCFILE(R7399_API/QRPGSRC)

4. Program DEC_DATA performs the main decryption functions:

CRTPGM PGM(R7399_API/DEC_DATA) MODULE(R7399_API/DEC_DATA R7399_API/BASE64_COD
R7399_API/GETTIME)

Alternative method: Create a program
The above steps create a command, GET_DATA. If you want to achieve the same goal in a
program way, you can create a program, CRT_GET, instead. To do this:

1. Create CL program CRT_GET:

CRTBNDCL PGM(R7399_API/CRT_GET) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_GET) TEXT(*SRCMBRTXT)

2. Start this program:

CALL CRT_GET

Translate Key Store (TRANS_KEY)
To build this command, create the following objects:

1. Command TRANS_KEY:

CRTCMD CMD(R7399_API/TRANS_KEY) PGM(R7399_API/TRANS_KEY)

2. Program TRANS_KEY translates keys stored in the specified keystore files to another
master key:

CRTBNDC PGM(R7399_API/TRANS_KEY) SRCFILE(R7399_API/QCSRC) SRCMBR(TRANS_KEY)
142 IBM System i Security: Protecting i5/OS Data with Encryption

lternative method: Create a program
The above steps create a command, TRANS_KEY. If you want to achieve the same goal in a
program way, you can create a program, CRT_TK, instead. To do this:

1. Create CL program CRT_GET:

CRTBNDCL PGM(R7399_API/CRT_TK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_TK) TEXT(*SRCMBRTXT)

2. Start this program:

CALL CRT_TK

11.3 Using the scenario application

Now that we have created the application components, we are ready to use the application.
This section walks you through the entire process including:

1. Creating a masker key: SET_MSTR_K command
2. Creating symmetric keys: GEN_SYMKEY command
3. Encrypting data: SET_DATA command
4. Decrypting data on source system: GET_DATA command
5. Translating Key Store: TRANS_KEY command
6. Decrypting data on target system: GET_DATA command

11.3.1 Create a master key: SET_MSTR_K command

The first step in using our application is to establish a master key. In our scenario, perform
this step by running the SET_MSTR_K command.

Note: As a reminder, a master key is a 256-bit AES key used by the Cryptographic
Services APIs to protect other keys. i5/OS supports a maximum of eight master keys,
which are stored in a specially protected area of the Licensed Internal Code.

For more information about master keys, along with the three master key versions, refer to
Chapter 3, “Key management concepts” on page 25, and Chapter 5, “Managing keys on
System i” on page 47.
Chapter 11. Cryptographic Services APIs method 143

Executing SET_MSTR_K command
This command controls the creation of the master key for use in our application. Enter the
following command on your i5/OS command entry screen:

SET_MSTR_K

Then press F4 for the prompt screen shown in Figure 11-6.

Figure 11-6 The Set Master Key (SET_MSTR_K) CL command prompt

The command requires you to supply the following information:

� Master Key ID (MSTRD)

This defines which master key you wish to set. (Remember, there are eight available in
i5/OS.)

As our scenario involves distributing data to a second system, or a target system, it is
necessary to use a key ID that is available on both systems. This key ID will be used on
the target system as a temporary master key when moving over the keystore file.

� Clear Master Key Version (CLR)

This defines which version of the master key (identified in the Master Key ID parameter)
you wish to clear.

� Passphrase Part x (25 Char) (IDx_1)

These are the passphrases that will be combined to generate the key.

Our command has three passphrases available to allow segregation of the key parts
amongst different individuals. This ensures that no one person has all of the information
necessary to recreate the master key.

Each passphrase in our command allows up to 25 characters of text.

 Set Master Key (SET_MSTR_K)

 Type choices, press Enter.

 Master Key ID 8 1, 2, 3, 4, 5, 6, 7, 8
 Clear Master Key Version *NEW *NEW, *OLD, *BOTH
 Passphrase Part 1 (25 Char) . .
 Reenter to confirm
 Passphrase Part 2 (25 Char) . .
 Reenter to confirm
 Passphrase Part 3 (25 Char) . .
 Reenter to confirm
 SSL Required *YES *YES, *NO

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
144 IBM System i Security: Protecting i5/OS Data with Encryption

� Reenter to confirm (IDx_2)

The command masks the entry of the passphrases, and therefore requires dual entry of
each passphrase to prevent key stroke errors.

� SSL Required (SSL)

If the user requests SSL, then the command will validate that the user is connected to an
SSL-enabled 5250 session before processing the request. We recommend this in order to
prevent the supplied information from being observable across the network.

Upon invocation, the command passes the user-supplied information to the command
validation program (SSL_TEST), which checks to see whether the user requested that SSL
be verified. If so, it accomplishes the verification by retrieving the display device information
from the current job, as shown in Figure 11-7.

Figure 11-7 Retrieve display device information

Using the Retrieve Device Description API, we determine the TCP/IP port number that the
user is connected to. Using the port number, we can verify whether the client connection to
the server is secure (the default communication port for SSL Telnet is 992). If the user
indicated that SSL is required, and the device is communicating over a unsecure connection,
the program displays the message No SSL connection and returns to the command display to
await user correction.

If SSL verification is passed (or not required), control passes to the command processing
program (SET_MSTR_K) to perform the key action.

Understanding SET_MSTR_K command

This section provides a detailed functional and structural analysis of the SET_MSTR_K
command.

The SET_MSTR_K command requires the user to provide the following main information:

� Which one of the eight master keys we wish to use
� The passphrases to be used to generate the master key

/* RETRIEVE JOB ATTRIBUTES - JOB NAME (= DEVICE NAME)

 RTVJOBA JOB(&DEVNAME)

/* RETRIEVE DEVICE DESCRIPTION API

 CALL PGM(QSYS/QDCRDEVD) PARM(&DEVINFO &LENGTH +
 'DEVD0600' &DEVNAME &ERRINFO)

Note: This section provides a detailed and structural analysis of the SET_MSTR_K
command. If you want to quickly run the entire application to have a complete view, you
may skip to “Executing GEN_SYMKEY command” on page 153. However, we strongly
recommend that you come back to this point and read the rest of this section carefully to
understand the logic behind this.
Chapter 11. Cryptographic Services APIs method 145

The rest of the information required by the APIs is coded into the command processing
program:

� How many passphrases to combine to make the master key
� Length of each passphrase
� CCSID for each passphrase

In Figure 11-8, we have selected master key 8 and that we want to clear the new version of
the master key. We have also provided our passphases and that an SSL connection is
required.

Figure 11-8 Using the SET_MSTR_K CL command to create master key 8

Used APIs
The SET_MSTR_K command (setting up a master key, in other words) utilizes the APIs
reviewed in this section.

Clear Master Key API
This API is Qc3ClearMasterKey in ILE and QC3CLRMK in OPM.

The first step is to clear the new master key version. The call to the Clear Master Key API is
depicted in Example 11-1.

Example 11-1 Clear Master Key API

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3ClearMasterKey (&mkid,
 &mstkv,
 &errCode);
if (errCode.Bytes_Available != 0) {

printf (">>Qc3ClearMasterKey< \n");
printf ("errCode.Exception_Id = %.7s\n", errCode.Exception_Id);

 return;
 }

 Set Master Key (SET_MSTR_K)

 Type choices, press Enter.

 Master Key ID > 8 1, 2, 3, 4, 5, 6, 7, 8
 Clear Master Key Version > *NEW *NEW, *OLD, *BOTH
 Passphrase Part 1 (25 Char) . . >
 Reenter to confirm >
 Passphrase Part 2 (25 Char) . . >
 Reenter to confirm >
 Passphrase Part 3 (25 Char) . . >
 Reenter to confirm >
 SSL Required > *YES *YES, *NO

Note: Before clearing an old master key version, care should be taken to ensure that no
key encryption keys or data encryption keys are still encrypted under the old version of the
master key.
146 IBM System i Security: Protecting i5/OS Data with Encryption

The Clear Master Key API clears a new or old master key version by setting it to binary 0s.
The parameter list includes:

� mkid

The master key ID indicates which of the eight key positions is going to be used. We
chose position 8.

� mstkv

This is the master key version to be cleared. We are creating a new key (hence our *NEW
designation on the SET_MSTR_K command). The value of hex “F0” indicates the new key
version.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of the Clear Master Key API, visit the following link:

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3clrmk.htm

Load Master Key Part API
This API is Qc3LoadMasterKeyPart in ILE and QC3LDMKP in OPM.

This API loads one or more parts that will be used to generate the master key. Although our
command allows for three passphrases, this is a self-imposed limitation and is not
representative of the number of parts allowed by the master key APIs. Still, it is
recommended to assign different key parts to different individuals to ensure that no single
person has the ability to reproduce a master key.

We call the Load Master Key Part API for each of the three passphrases entered on the
SET_MSTR_K CL command. The call to the Load Master Key Part API for the first
passphrase is depicted in Example 11-2.

Example 11-2 Load Master Key Part API

CCSID_of_passphrase = 37;
Length_of_passphrase = sizeof(Passphrase_1);
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3LoadMasterKeyPart (&mkid,
 &Passphrase_1,
 &Length_of_passphrase,
 &CCSID_of_passphrase,
 &errCode);
if (errCode.Bytes_Available != 0) {

printf (">>Qc3LoadMasterKeyPart< \n");
 printf ("errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }
Chapter 11. Cryptographic Services APIs method 147

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3clrmk.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

The parameter list includes:

� mkid

The master key ID indicates which of the eight key positions is going to be used. We
chose position 8.

� Passphrase_1

This is the first passphrase selected on the SET_MSTR_K command (this API is called
once for each passphrase).

� Length_of_passphrase

This is the length of the passphrase. The SET_MSTR_K command allows for the entry of
passphrases up to 25 characters in length.

� CCSID_of_passphrase

We are using a CCSID of 37.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3ldmkp.htm

Set Master Key API
This API is Qc3SetMasterKey in ILE and QC3SETMK in OPM.

Once all of the master key parts are loaded, we need to set the master key to finalize it.
During the set function, the generated key (and its Key Verification Value KVV) is moved into
the master key’s current version. The existing current version is moved to the old version,
and the existing old version is dropped.

The Set Master Key API sets the master key versions as follows:

� Moves the current master key version into the old master key version
� Moves the new master key version into the current master key version
� Clears the new master key version by settings it to binary 0s

The call to the Set Master Key API is depicted in Example 11-3.

Example 11-3 Set master key API

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3SetMasterKey (&mkid,
 &Key_verification_value,
 &errCode);
if (errCode.Bytes_Available != 0) {

printf (">>Qc3SetMasterKey< \n");
 printf ("errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }
148 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3ldmkp.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

The parameter list includes:

� mkid

The master key ID indicates which of the eight key positions is going to be used. We
chose position 8.

� Key_verification_value

The key verification value (KVV) is a 20-character value returned from the API. The KVV
can be used for later reference to determine whether the master key has changed.

The current and old master key versions each have a KVV.

When you set a master key, any key encrypting key or data encryption key that was stored
under that master key must be translated (decrypted and reencrypted). For more
information, see 5.1.3, “Changing a master key” on page 52.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3setmk
.htm

Calculate Hash API
This API is Qc3CalculateHash in ILE and QC3CALHA in OPM. The Calculate Hash API
calculates a hash value of a string.

Although not a requirement of creating a master key, we decided to store the key verification
value returned by the set master key API for later reference. However, as we are storing the
KVV in a regular database file, we first hash the value using the SHA-1 hashing algorithm.
We then convert the result to base64 to ensure that it only contains displayable characters.

The call to the Calculate Hash API is depicted in Example 11-4.

Example 11-4 Qc3CalculateHash API

memset (&Key_verification_Hash, '\0', sizeof(Key_verification_Hash));
Length_of_input_data = sizeof(Key_verification_value);
Algorithm_description[3] = Qc3_SHA1;
Cryptographic_service_provider = Qc3_Any_CSP;

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3CalculateHash (&Key_verification_value,
 &Length_of_input_data,
 "DATA0100",
 &Algorithm_description,
 "ALGD0500",
 &Cryptographic_service_provider,
 NULL,
 &Key_verification_Hash,
 &errCode);
Chapter 11. Cryptographic Services APIs method 149

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3setmk.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

if (errCode.Bytes_Available != 0)
 {

printf (">>Qc3CalculateHash< \n");
 printf ("errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� Key_verification_value

This is the KVV provided by the Set Master Key API.

� Length_of_input_data

This is the length of the KVV.

� “DATA0100”

This indicates to the API the format of the input data. This format indicates that the
key_verification_value parameter contains the data to be hashed, rather than an array of
pointers.

� Algorithm_description

For SHA-1, this will be binary 00000002.

� “ALGD0500”

This indicates to the API which format we wish to use for the Algorithm_description
parameter. ALGD0500 specifies the structure for a hash algorithm.

� Cryptographic_service_provider

This indicates which cryptographic service provider (CSP) will perform the hash
operation—software or hardware. Using a character value of 0 instructs i5/OS to select
the appropriate CSP.

� Key_verification_Hash

This is the area in which to store the returned hash value. The length of the hash is
defined by the hash algorithm. For SHA-1 this will be a character value of 20 bytes.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3calha
.htm
150 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3calha.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3calha.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Record generated master key details
To store information about the generated master keys, we write the following details to the file
MSTRKVV:

� Master key number

This is the master key ID that was created (this field is used as the database key field).

� Key verification value

This is the KVV returned by the Set Master Key API, which was subsequently hashed
using SHA-1 and converted to Base64.

� Time stamp of when the master key was created

We retrieve the current system time using RPG routine GETTIME.

� User profile under which the master key was generated

We retrieve the user profile name in CL module RTVINF.

� System name where the master key was generated

We retrieve the system name in CL module RTVINF.

To see information about the current master keys, enter the following CL command:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/MSTRKVV)

Sample results are depicted in Figure 11-9.

Figure 11-9 Sample master key information

Running SET_MSTR_K command step summary
The basic steps that we took to generate our master key are shown in Figure 11-10.

Figure 11-10 Master key and MSTRKVV file

MSTRNUM KVV TIME USER
 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.21.28.209000 MILANK
 1 0XkNLzhc7PgzoRdMCPJsCjOol+8= 2007-05-18-00.30.25.279000 MILANK
 5 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.30.41.549000 MILANK

Note: We assume that master keys will only be set up via the SET_MSTR_K command.
Although it is useful to know which master keys are already established on the system, the
KVV stored in database file MSTRKVV is not the true KVV. The KVV generated by the Set
Master Key API is first hashed using the SHA-1 algorithm, and then converted to Base64
for readability.

1. Qc3ClearMasterKey
2. Qc3LoadMasterKeyPart
3. Qc3LoadMasterKeyPart
4. Qc3LoadMasterKeyPart
5. Qc3SetMasterKey

MK #8

MSTRKVV file
Chapter 11. Cryptographic Services APIs method 151

11.3.2 Create symmetric keys: GEN_SYMKEY command

The second step is to generate two symmetric keys: one for the source system and one for
the target system.

Disallowed function
When a key is created, it can be limited to only perform certain cryptographic functions. This
is controlled via the disallowed function parameter, and the options are listed below:

� No functions are disallowed (binary 0).
� Encryption is disallowed (binary 1).
� Decryption is disallowed (binary 2).
� MACing is disallowed (binary 4).
� Signing is disallowed (binary 8).

The values can be summed in order to disallow multiple functions. For example, to disallow
everything except MACing, the sum of the values is 1+2+8 = 11 (Hex B). This value should be
saved along with the encrypted key value because it will be required when the encrypted key
value is used on the Cryptographic Services APIs.

Note: A symmetric key is a single key that can be used to encrypt, and also subsequently
decrypt, data.

In i5/OS, a symmetric key is stored in a database file called a keystore file. The keys in the
keystore file are encrypted under a master key.
152 IBM System i Security: Protecting i5/OS Data with Encryption

Executing GEN_SYMKEY command
This command controls the creation of the symmetric keys for use in our application, and
appears as shown in Figure 11-11.

GEN_SYMKEY

Figure 11-11 CMD to generate symmetric keys prompt

The parameters are:

� Key LABEL of Key record (KEYLABEL)

This is a text label used to identify the keys in the keystore.

� Master key (MSTRK)

This is the master key ID of the master key that will be used to encrypt the keys in the
keystore files.

� Key Store File Source (KEYFILES)

This is the qualified name of the keystore file to store the key on the source system.

� Text (TEXT1)

Text description to be stored in the information file (see INFOFILE parameter) on the
Source system.

� Key Store File Target (KEYFILET)

This is the qualified name of the keystore file to store the key on the target system. This file
will need to be moved to the target system after creation.

� Text (TEXT2)

Text description to be stored in the information file (see INFOFILE parameter) on the
target system.

 Generate AES Keys (GEN_SYMKEY)

 Type choices, press Enter.

 Key LABEL of Key record (KL) . . LABEL_04
 Master Key (MK) 8 1, 2, 3, 4, 5, 6, 7, 8
 Key Store File Source (KSFS) . . KEYFILES Name
 Library Name R7399_API Name, *CURLIB
 TEXT SOURCE Character value
 Key Store File Target (KSFT) . . KEYFILET Name
 Library Name R7399_API Name, *CURLIB
 TEXT TARGET Character value
 Allowed Function Target (DF) . . D E, D, S, M, A
 Info File (IF) INFOFILE Name
 Library Name R7399_API Name, *CURLIB
 KEK file (KEKF) KEKFILE Name
 Library Name R7399_API Name, *CURLIB

 Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
Chapter 11. Cryptographic Services APIs method 153

� Allowed Function Target (DISALL)

This code indicates which key functions are allowed for the key created in the Key Store
File Target keystore:

E Encryption is allowed.
D Decryption is allowed.
S Signing is allowed.
M MACing is allowed.
A All of the above are allowed.

In our scenario, we pick the value D so that the only decryption function is to be allowed
on the target system.

� Info File (INFOFILE)

This is the qualified name of the file used to stored information about the generated keys.

� KEK File (KEKFILE)

This is the qualified name of the Key Encryption Key (KEK) keystore file.

Understanding the GEN_SYMKEY command

This section provides some background information about the GEN_SYMKEY command.

Use of symmetic keys for source and target systems
As already mentioned, we need to create two symmetric keys for our application. One key will
be dedicated to source system and will allow both encryption and decryption functions. The
other key is intended for use on target system and allows only decryption functions.

Note: This section provides a detailed and structural analysis of the GEN_SYMKEY
command. If you want to quickly run the entire application to have a complete view, you
may skip to “Executing SET_DATA command” on page 171. However, we strongly
recommend that you come back to this point and read the rest of section carefully to
understand the logic behind this.
154 IBM System i Security: Protecting i5/OS Data with Encryption

We accomplish this by setting up two separate keystore files. The same key will be written to
both keystore files with the same label. This is depicted in Figure 11-12. The only difference
between the key records is the disallowed functions:

� Source system

The key intended for use on the source system will have a disallow function setting of ‘0’,
which means that no function is disallowed (that is, it is capable of performing all
functions).

� Target system

The key intended for use on the target system will have a disallow function setting of Hex
D (13), which indicates that all functions except decryption are disallowed (that is, it can
only perform decryption).

Figure 11-12 Keystore files

Setting up the symmetric keys
Our GEN_SYMKEY command requires that the user provide the following main information:

� The key label to be assigned to the two keys for later retrieval
� Which of the eight master keys should be used to encrypt the keys

In Figure 11-13, we have selected LABEL_04 as the desired key label, and master key 8. This
is the master key that we created in “Executing SET_MSTR_K command” on page 144.

The other parameters are left at their default values.

Figure 11-13 Using the GEN_SYMKEY CL command to specify which label and master key to use

Used APIs
To set up a symmetric key, we utilize the following APIs.

Create Keystore API: for source system
This API is Qc3CreateKeyStore in ILE and QC3CRTKS in OPM.

 Generate AES Keys (GEN_SYMKEY)

 Type choices, press Enter.

 Key LABEL of Key record (KL) . . LABEL_04
 Master Key (MK) 8 1, 2, 3, 4, 5, 6, 7, 8

Keystore files
Keystore file (source)

MK #n

 key1 encrypted under MK #n disall "0"Labelx

Keystore file (target)
 MK #n

 key1 encrypted under MK #n disall "D"Labelx

 key2 encrypted under MK #n disall "0"Labelz key2 encrypted under MK #n disall "D"Labelz

Identical keys

Identical keys
Chapter 11. Cryptographic Services APIs method 155

The Create Key Store API generates a keystore file in a library. The key values in the
keystore file are encrypted under a given master key. We use this API several times to
generate the three keystores (a keystore file for the source and target system and KEK
keystore file).

In preparation for generating the symmetric key, we first need to create the keystore file for
the source system. The call to the Create Keystore API is depicted in Example 11-5.

Example 11-5 Create Keystore API

*++argv;
memset(kskey_S.Key_Store, ' ', sizeof(kskey_S.Key_Store));
memcpy(kskey_S.Key_Store, argv[0], 20);
memcpy(ksauth, "*EXCLUDE ", 10);
memset(ObjExist, 0, sizeof(ObjExist));
memcpy(ObjExist, "/QSYS.LIB/", 10);

for (i=10,j=10; i < 20 && kskey_S.Key_Store[i] != ' ';
 ObjExist[j] = kskey_S.Key_Store[i], ++i, ++j);
 memcpy(&ObjExist[j], ".LIB/", 5);
 j += 5;
for (i= 0 ; i < 10 && kskey_S.Key_Store[i] != ' ';
 ObjExist[j] = kskey_S.Key_Store[i], ++i, ++j);
 memcpy(&ObjExist[j], ".FILE", 5);

if (stat(ObjExist, &statbuf) != 0)
{
 memset(ksdesc, ' ', sizeof(ksdesc));
 memcpy(ksdesc, ">>> KSF <S< ", 13);
 memcpy(&ksdesc[13], argv[0], 10);
 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);

 Qc3CreateKeyStore(kskey_S.Key_Store,
 &mkid,
 ksauth,
 ksdesc,
 &errCode);

 if (errCode.Bytes_Available != 0)

{
 printf (">>Qc3CreateKeyStore < \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception__Id);
 return;
 }

The parameter list includes:

� kskey_S.Key_Store

This is the qualified name of the desired keystore file. For us, this will be KEYFILES in
library R7399_API.

Note: If the keystore already exists, then any keys stored there will be encrypted by the
master key specified during the keystore creation and not under the master key requested
on the GEN_SYMKEY command.
156 IBM System i Security: Protecting i5/OS Data with Encryption

� mkid

This is the master key that the keystore will be encrypted under. We use master key 8.

� ksauth

This is the i5/OS object-level authority that *PUBLIC will have to the keystore file. The
recommended value is *EXCLUDE.

� ksdesc

This is the text description that will be given to the keystore file object.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3crtks.htm

Create Keystore API: for target system
This API is Qc3CreateKeyStore in ILE and QC3CRTKS in OPM. This is the same API used to
create a keystore file on the source system.

We repeat the creation for the keystore file for the target system. Again, we use the Create
Keystore API.

The parameter list includes:

� kskey_T.Key_Store

This is the qualified name of the desired keystore file. For us, this will be KEYFILET in
library R7399_API.

� mkid

This is the master key that the keystore will be encrypted under. We use master key 8.

� ksauth

This is the i5/OS object-level authority that *PUBLIC will have to the keystore file. The
recommended value is *EXCLUDE.

� ksdesc

This is the text description that will be given to the keystore file object.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.
Chapter 11. Cryptographic Services APIs method 157

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3crtks.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Create Keystore API: for key encryption key
This API is Qc3CreateKeyStore in ILE and QC3CRTKS in OPM. This is the same API used to
create a keystore file on both source and target systems.

Now we create the final keystore file. This keystore file is to contain a key encrypting key
(KEK). Although the KEK is not actually required (as the data encryption key can be
encrypted directly under the master key), we use a KEK to ensure that the data encryption
key is not maintained in the program in cleartext form.

As before, we use the Create Keystore API.

The parameter list includes:

� kskey_K.Key_Store

This is the qualified name of the desired keystore file. For us, this will be KEKFILE in
library R7399_API.

� mkid

This is the master key that the keystore will be encrypted under. We use master key 8.

� ksauth

This is the i5/OS object-level authority that *PUBLIC will have to the keystore file. The
recommended value is *EXCLUDE.

� ksdesc

This is the text description that will be given to the keystore file object.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

Generate Key Record API
This API is Qc3GenKeyRecord in ILE and QC3GENKR in OPM.

The Generate Key Record API generates a random key and stores it in a keystore file. We
use this API to generate and store a key encrypting key.

This API generates a 256-bit AES key encrypting key and stores it in the KEK keystore file.
The call to the Generate Key Record API is depicted in Example 11-6.

Example 11-6 Qc3GenKeyRecord for KEK

memset(kskey_K.Record_Label, 0x40, sizeof(kskey_K.Record_Label));
memcpy(kskey_K.Record_Label, "KEK_LABEL_01", 12);
keyType = Qc3_AES;
keySize = 32;
pubExp = 0;

Note: Again, if the keystore already exists, then any keys stored there will be encrypted by
the master key specified during the keystore creation and not under the master key
requested on the GEN_SYMKEY command.
158 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

disFunc=0;
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3GenKeyRecord(kskey_K.Key_Store,
 kskey_K.Record_Label,
 &keyType,
 &keySize,
 &pubExp,
 &disFunc,
 &Cryptographic_service_provider,
 NULL,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3GenKeyRecord < \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� kskey_K.Key_Store

This is the qualified name of the KEK keystore file. For us, this will be KEKFILE in library
R7399_API.

� kskey_K.Record_Label

Record label. This is hardcoded in the program as “KEK_LABEL_01”. This enables
retrieval of the correct key.

� keyType

This is the key type. We are generating an AES key, so we designate “Qc3_AES”.

� KeySize

This is the size of the key that will be generated. For a 256-bit key, this value is 32 (32 x 8
= 256).

� pubExp

The public key exponent for the symmetric key must be set to binary 0.

� disFunc

The disallowed function for KEK is binary 0 (allow all functions).

� Cryptographic_service_provider

This indicates which cryptographic service provider (CSP) will perform the hash
operation—software or hardware. Using a character value of 0 instructs i5/OS to select
the appropriate CSP.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
Chapter 11. Cryptographic Services APIs method 159

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3genkr
.htm

Create Key Context API
This API is Qc3CreateKeyContext in ILE and QC3CRTKX in OPM.

The Create Key Context API sets up a token that can be used to reference a key across
multiple API calls.

This API creates a temporary area to be used for holding a cryptographic key, and returns a
token that can be used on subsequent API calls. The key context cannot be shared between
jobs. The call to the Create Key Context API is depicted in Example 11-7.

Example 11-7 Qc3CreateKeyContext API

keyStringLen = sizeof(kskey_K); /* Set length of key string */
keyFormat = Qc3_KSLabel_Struct; /* Key format is keystore label*/
keyForm = Qc3_Clear; /* Key string is clear */
 /* Key type already set to AES */
 /* Create key context */
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3CreateKeyContext((char*)&kskey_K,
 &keyStringLen,
 &keyFormat,
 &keyType,
 &keyForm,
 NULL,
 NULL,
 KEKctx,
 &errCode);

if (errCode.Bytes_Available != 0)
 {

printf (">>Qc3CreateKeyContext <\n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� kskey_K

This is the key string. The key string may contain the key value or it may contain a
reference to the key value.

Note: The key context includes an authentication value. If the token is used for subsequent
API calls, but with an incorrect authentication value, the user will be subjected to a
10-second penalty wait. For each authentication error in the job, the penalty wait increases
in 10-second increments up to a maximum wait of 10 minutes.
160 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3genkr.htm

� keyStringLen

This is the length of the supplied key string.

� keyFormat

This indicates the format of the supplied key string. In our case, it is a structure containing
the keystore name and the record label.

� keyType

This indicates the type of key. We are using binary 22, which indicates an AES key.

� keyForm

The key form indicates whether the supplied key string is in an encrypted state.

� KEKctx

This is the area in which the API will store the created key context token.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3crtkx.htm

Create Algorithm Context API
This API is Qc3CreateAlgorithmContext in ILE and QC3CRTAX in OPM.

The Create Algorithm Context API sets up a token that can be used to reference an
encryption algorithm and its properties and maintain the state of the operation across multiple
calls.

This API creates a temporary area to be used for holding the algorithm parameters, and
returns a token that can be used on subsequent API calls. The algorithm context cannot be
shared between jobs. The call to the Create Algorithm Context API is depicted in
Example 11-8.

Example 11-8 Qc3CreateAlgorithmContext API

memset(&algD, 0, sizeof(algD)); /* Init alg description to null*/
algD.Block_Cipher_Alg = Qc3_AES; /* Set AES algorithm */
algD.Block_Length = 16; /* Block size is 16 */
algD.Mode = Qc3_CBC; /* Use cipher block chaining */
algD.Pad_Option = Qc3_No_Pad; /* Do not pad */
 /* Create algorithm context */
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Note: The algorithm context includes an authentication value. If the token is used for
subsequent API calls, but with an incorrect authentication value, the user will be subjected
to a 10-second penalty wait. For each authentication error in the job, the penalty wait
increases in 10-second increments up to a maximum wait of 10 minutes.
Chapter 11. Cryptographic Services APIs method 161

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3crtkx.htm

Qc3CreateAlgorithmContext((unsigned char*)&algD,
Qc3_Alg_Block_Cipher,
AESctx,

&errCode);
if (errCode.Bytes_Available != 0)
 {

printf (">>Qc3CreateAlgorithmContext < \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� algD

This is the algorithm description.

� Qc3_Alg_Block_Cipher

This is the algorithm description format name. We use "ALGD0200", which is used for a
block cipher algorithm (DES, triple DES, AES, and RC2).

� AESctx

This is the area in which the API will store the created algorithm context token.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3crtax
.htm

Generate Symmetric Key API
This API is Qc3GenSymmetricKey in ILE and QC3GENSK in OPM.

The Generate Symmetric Key API creates a data encryption key. In our example, we
generate a 256-bit AES key.

This API generates a random key value. This key is encrypted under the KEK that we created
(labeled KEK_LABEL_01). The call to the Generate Symmetric Key API is depicted in
Example 11-9.

Example 11-9 Qc3GenSymmetricKey API

keyFormat = Qc3_Bin_String; /* Return a binary string */
keyForm = Qc3_Encrypted; /* Encrypt generated key */
keySize = 32; /* Key size is 32 bytes long */
 /* Key type already set to AES */
keySizeArea = 64; /* Receiver 64 bytes */
memset(&keyAES, 0, sizeof(keyAES));
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
162 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3crtax.htm

Qc3GenSymmetricKey(&keyType,
 &keySize,
 &keyFormat,
 &keyForm,

&KEKctx,
&AESctx,

 &Cryptographic_service_provider,
 NULL,
 keyAES,
 &keySizeArea,
 &keySize,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3GenSymmetricKey < \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� keyType

This is the algorithm type of the key to be generated.

� keySize

This is the desired size of the key.

� keyFormat

This indicates the format of the output key string.

� keyForm

The key form indicates whether the key string is encrypted.

� KEKctx

This is the key context token for the KEK.

� AESctx

This is the algorithm context token for the KEK.

� Cryptographic_service_provider

This indicates which cryptographic service provider will perform the hash
operation—software or hardware. Using a character value of 0 instructs i5/OS to select
the appropriate CSP.

� keyAES

This is the area in which to hold the generated key string.

� keySizeArea

This is the length of the area the we provide for the key string.

� keySize

This is the length of the key string returned.
Chapter 11. Cryptographic Services APIs method 163

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3gensk
.htm

Write Key Record API: for source system
This API is Qc3WriteKeyRecord in ILE and QC3WRTKR in OPM.

Next, we need to store the symmetric key in the keystore file for the source system
(KEYFILES). This key is stored with a disallowed function setting of 0 (All is allowed). The
Write Key Record API stores a given key value in a keystore file.

To store the generated key in the keystore file, we use the Write Key Record API, as depicted
in Example 11-10.

Example 11-10 Qc3WriteKeyRecord API for source system

memset(kskey_S.Record_Label, 0x40, sizeof(kskey_K.Record_Label));
memcpy(kskey_S.Record_Label, infoout.KEYLABEL, sizeof(infoout.KEYLABEL));

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3WriteKeyRecord(kskey_S.Key_Store,
 kskey_S.Record_Label,
 keyAES,
 &keySize,
 &keyFormat,
 &keyType,
 &disFunc_rtv_S,
 &keyForm,

&KEKctx,
&AESctx,

 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3WriteKeyRecord< \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);

return;
}

The parameter list includes:

� kskey_S.Key_Store

This is the qualified keystore file name for the source system.
164 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3gensk.htm

� kskey_S.Record_Label

This is the key’s label.

� keyAES

This is the actual key string.

� keySize

This is the length of the supplied key string.

� keyFormat

This indicates the format of the supplied key string.

� keyType

This is the algorithm type for the key.

� disFunc_rtv_S

This is the disallowed function code.

� keyForm

The key form indicates whether the supplied key string is in an encrypted state.

� KEKctx

This is the key context token for the KEK.

� AESctx

This is the algorithm context token for the KEK.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3wrtkr.htm

Write Key Record API: for target system
This API is Qc3WriteKeyRecord in ILE and QC3WRTKR in OPM. This is the same API used
for the source system.

We also need to store the same symmetric key in the keystore file for the target system
(KEYFILET). However, this key is stored with a disallowed function setting to only allow
decryption. The call to the Write Key Record API is depicted in Example 11-11.

Example 11-11 Qc3WriteKeyRecord API for target system

memset(kskey_T.Record_Label, 0x40, sizeof(kskey_K.Record_Label));
memcpy(kskey_T.Record_Label, infoout.KEYLABEL, sizeof(infoout.KEYLABEL));

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3WriteKeyRecord(kskey_T.Key_Store,
 kskey_T.Record_Label,
Chapter 11. Cryptographic Services APIs method 165

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/apis/qc3wrtkr.htm

 keyAES,
 &keySize,
 &keyFormat,
 &keyType,
 &disFunc_rtv_T,
 &keyForm,

&KEKctx,
&AESctx,

 &errCode);
if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3WriteKeyRecord< \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� kskey_T.Key_Store

This is the qualified keystore file name for the target system.

� kskey_T.Record_Label

This is the key’s label.

� keyAES

This is the actual key string.

� keySize

This is the length of the supplied key string.

� keyFormat

This indicates the format of the supplied key string.

� keyType

This is the algorithm type of the key being written.

� disFunc_rtv_T

This is the disallowed function code. On the target system, this is hexadecimal D, which
indicates that the key can only be used for decryption functions.

� keyForm

The key form indicates whether the supplied key string is in an encrypted state.

� KEKctx

This is the key context token for the KEK.

� AESctx

This is the algorithm context token for the KEK.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.
166 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Destroy Key Context API
This API is Qc3DestroyKeyContext in ILE and QC3DESKX in OPM.

This API destroys the key context. Although a key context is destroyed when the job ends, we
recommend destroying it manually to ensure that it cannot be used by any other user of the
job. The call to the Destroy Key Context API is depicted in Example 11-12.

Example 11-12 Qc3DestroyKeyContext API

Qc3DestroyKeyContext(KEKctx,
 &errCode);

The parameter list includes:

� KEKctx

This is the key context token for the KEK.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3deskx
.htm

Destroy Algorithm Context API
This API is Qc3DestroyAlgorithmContext in ILE and QC3DESAX in OPM.

This API destroys the algorithm context. Although an algorithm context is destroyed when the
job ends, we recommend destroying it manually to ensure that it cannot be used by any other
user of the job. The call to the Destroy Algorithm Context API is depicted in Example 11-13.

Example 11-13 Qc3DestroyAlgorithmContext

Qc3DestroyAlgorithmContext(AESctx,
 &errCode);

The parameter list includes:

� AESctx

This is the algorithm context token for the KEK.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.
Chapter 11. Cryptographic Services APIs method 167

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3deskx.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3desax
.htm

Clear encryption key field
This step simply clears the key from memory. This is depicted in Example 11-14.

Example 11-14 Wipe out encrypted file key

memset (keyAES, '\0', sizeof(keyAES));

Delete Key Record API
This API is Qc3DeleteKeyRecord in ILE and QC3DLTKR in OPM.

This API deletes a key record from a keystore file. At this time, we wish to delete the KEK key
record from the KEK keystore file, as it is no longer needed. The call to the Delete Key
Record API is depicted in Example 11-15.

Example 11-15 Qc3DeleteKeyRecord API

Qc3DeleteKeyRecord(kskey_K.Key_Store,
 kskey_K.Record_Label,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3DeleteKeyRecord < \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

The parameter list includes:

� kskey_K.Key_Store

This is the qualified name of the KEK keystore file.

� kskey_K.Record_Label

This is the label of the key to be deleted. For us, this is KEK_LABEL_01.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3dltkr
.htm
168 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3desax.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3dltkr.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3dltkr.htm

Storing symmetric key information
To store information about the generated data keys, we write the following details to the file
INFOFILE. This information will be used by the program TEST_KEY to check for the
existence of this key before data is encrypted.

� Key label

This is the key label that is used to access the key.

� Key type

This is the algorithm type of key that is stored.

� Key Size

This is the byte size of the key that is stored.

� Master Key

This is the master key ID that is used to encrypt the key.

� Disallowed function

This is the binary value of the function that is disallowed for the key.

� Key verification value

This is the KVV of the master key, as returned by the Set Master Key API, which was
subsequently hashed using SHA-1 and converted to Base64.

To see information about the current symmetric keys, enter the following CL command:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/INFOFILE)

Sample results are depicted in Figure 11-14.

Figure 11-14 Sample INFOFILE file contents

Running GEN_SYMKEY command step summary
So far, we have created our master key, the various keystore files, a key encrypting key, and
two copies of a symmetric key. The symmetric key is stored in two keystore files using the
same key label, however, each key has a different disallowed function setting based on
where the key will be used.

KEYLABEL KEYTYPE KEYSIZE SMK SDISALL SKVV
LABEL_07 AES-CBC 32 8 0 pqUBIqLfyThueZ+QmeEGvLI0WU0=
LABEL_01 AES-CBC 32 8 0 pqUBIqLfyThueZ+QmeEGvLI0WU0=
LABEL_04 AES-CBC 32 8 0 pqUBIqLfyThueZ+QmeEGvLI0WU0=
Chapter 11. Cryptographic Services APIs method 169

The steps are outlined in Figure 11-15.

Figure 11-15 Overview of the GEN_SYMKEY function

11.3.3 Encrypt data: SET_DATA command

Now that we have our infrastructure in place, we are ready to encrypt data. We do this by
running SET_DATA command.

KEK Store File #n

Key store file(target)
 MK #8

1. Qc3CreateKeyStore

2. Qc3CreateKeyStore

3. Qc3CreateKeyStore

KEK key record (AES)

4. Qc3GenKeyRecord
Master Key #n

file key encrypted under KEK

7. Qc3GenSymmetricKey

Key context

Alg context

 DisAllowed
“D“

Master Key #n

Master Key #n

6. Qc3CreateAlgorithmContext

Key store file(source)
MK #8

 key encrypted under MK #8 disall "0"LABEL_04

 key encrypted under MK #8 disall "D"LABEL_04

Alg Context to be used with
symmetric cipher for KEK

Key Context to be used with
symmetric cipher for KEK

10.Qc3DestroyKeyContext
11.Qc3DestroyAlgorithmContext
12. Wipe out encrypted file key
13. retrieve KEK key record

Wipe

Destroy
Alg context

Destroy
Key Context

INFOFILE

KEK_LAB
EL_01

MK #8

5. Qc3CreateKeyContext

9. Qc3WriteKeyRecord

8. Qc3WriteKeyRecord

MSTRKVV file

On source system

 DisAllowed
“0“

 KEYLABEL KEYTYPE KEYSIZE SMK SDISALL SKVV
 LABEL_04 AES-CBC 32 8 0 pqUBIqLfyThueZ+QmeEGvLI0WU0=
 LABEL_01 AES-CBC 32 8 0 pqUBIqLfyThueZ+QmeEGvLI0WU0=

 MSTRNUM KVV TIME USER
 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.21.28.209000 MILANK
 1 0XkNLzhc7PgzoRdMCPJsCjOol+8= 2007-05-18-00.30.25.279000 MILANK
 5 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.30.41.549000 MILANK

170 IBM System i Security: Protecting i5/OS Data with Encryption

Executing SET_DATA command
This command writes data (including private information) to the database file ENCDATA on
the source system.

Although this type of function is more commonly performed via an application program with a
display format, we created a command-based interface to allow us to focus on the
cryptographic functionality (Figure 11-16).

Figure 11-16 The Set Customer Data (SET_DATA) CL command prompt

The command requires you to supply the following information:

� Key LABEL of Key record

This is the value of the label field in the keystore file indicating which key we wish to use.

� Key Store File Source

This is the name of the keystore file for the source system.

� Key Store File Target

This is the name of the keystore file for the target system.

� Data File

This is the name of the file that contains the customer data.

� Miscellaneous Customer Details

Specify the customer details (such as name and address) that you wish to add to the
customer data file.

� Secure Data

This is the data that needs to be encrypted before it is stored.

Upon invocation, the command calls the processing program (SET_DATA), which controls
the command function. The functions performed include testing the required key, encrypting
the data, and storing it.

 Set Customer Data (SET_DATA)

Type choices, press Enter.

Key LABEL of Key record (KL) . .
Key Store File Souce (KSFS) . . KEYFILES Name
 Library Name R7399_API Name, *CURLIB
Key Store File Target (KSFT) . . KEYFILET Name
 Library Name R7399_API Name, *CURLIB
Data File (DF) ENCDATA Name
 Library Name R7399_API Name, *CURLIB
First Name
Last Name
Address
City
Country
States Character value
ZIP Code Character value
Phone Number Character value
Secure Data
Chapter 11. Cryptographic Services APIs method 171

Understanding the SET_DATA command

Our SET_DATA command requires that the user provide information about the keystores, the
key that we wish to use, and, of course, the customer data. We supply the information shown
in Figure 11-17.

Figure 11-17 The Set Customer Data (SET_DATA) CL command prompt

The command passes the parameter data to the command processing program SET_DATA.
This program calls the ENC_DATA program to encrypt and store the data in the ENCDATA
file. At the end, the program displays a completion message, as shown in Figure 11-18.

Figure 11-18 Completion message about data encryption function

Note: This section provides a detailed and structural analysis of the SET_DATA
command. If you want to quickly run the entire application to have a complete view, you
may skip to 11.3.4, “Decrypt data on source system: GET_DATA command” on page 185.
However, we strongly recommend that you to come back to this point and read the rest of
section carefully to understand the logic behind this.

 Set Customer Data (SET_DATA)

Type choices, press Enter.

Key LABEL of Key record (KL) . . > LABEL_04
Key Store File Souce (KSFS) . . KEYFILES Name
 Library Name R7399_API Name, *CURLIB
Key Store File Target (KSFT) . . KEYFILET Name
 Library Name R7399_API Name, *CURLIB
Data File (DF) ENCDATA Name
 Library Name R7399_API Name, *CURLIB
First Name > Tom
Last Name > Bliss
Address > '1232 Maple St.'
City > Anytown
Country > USA
State > MN Character value
ZIP Code > 25611 Character value
Phone Number > 32565 Character value
Secure Data > 'This is secret'

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=Information Assistant
 F23=Set initial menu
 Key Label LABEL_04 in R7399_API/KEYFILES was used to encrypt data
172 IBM System i Security: Protecting i5/OS Data with Encryption

The overall structure of the SET_DATA command function is depicted in Figure 11-19.

Figure 11-19 Structure of Set Customer Data (SET_DATA) CL command

Used APIs
To encrypt and store data, we utilize the APIs discussed in this section.

Retrieve Key Record Attributes API
This API is Qc3RetrieveKeyRecordAtr in ILE and QC3RTVKA in OPM.

The first step in our application’s encryption process is to check the existence of the key with
the label “LABEL_04” in the keystore file KEYFILES and KEYFILET. We retrieve the
attributes of the key in the keystore file (key type, key size, Master key ID, Master key
verification value, and Disallowed function). The retrieval is performed by the Retrieve Key
Record Attributes API, as depicted in Example 11-16 for the source system and
Example 11-17 on page 174 for the target system.

Example 11-16 Qc3RetrieveKeyRecordAtr API for the Source system

Qc3RetrieveKeyRecordAtr(kskey.Key_Store,
 endaout.KEYLAB,
 &keyType_rtv,
 &keySize_rtv,
 &mkid_rtv,
 &Master_verification_value_rtv,

Structure of the programs

SET_DATA

SET_DATA
*CMD

SET_DATA
CL program

ENC_DATA
C program

4/ Qc3GenPRNs IV (Initialization Vector)

5/ Qc3GenPRNs Pseudorandom Binary Stream

6/ Qc3CalculateHash for secure data

7/ Qc3EncryptData and convert to Base64

8/ Qc3CalculateHash of all record and convert to Base64

Key store file(source)
R7399_API/KEYFILES

key encrypted under MK #8 disall "0"Label_04

ENCDATA(R7399_API/ENCDATA)

FNAME IV64 ENC64 KLABEL KSFILE Time Hash64InfoLNAME

IV(Base64) Secret data(Base64) Hash(Base64)

encryption

Key Label LABEL_04 in R7399_API/KEYFILES was used to encrypt data

2/ Qc3RetrieveKeyRecordAtr (for Target systém)

Key store file(target)
R7399_API/KEYFILET

key encrypted under MK #8 disall "D"Label_04

 1/ Qc3RetrieveKeyRecordAtr (for Source systém)

3/ Qc3TestMasterKey (Test Master Key)

MK #n

Chapter 11. Cryptographic Services APIs method 173

 &disFunc_rtv,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3RetrieveKeyRecordAtr \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[5], "1", 1);
 return;
 }

Example 11-17 Qc3RetrieveKeyRecordAtr API for the target system

Qc3RetrieveKeyRecordAtr(T_kskey.Key_Store,
 endaout.KEYLAB,
 &T_keyType_rtv,
 &T_keySize_rtv,
 &T_mkid_rtv,
 &T_Master_verification_value_rtv,
 &T_disFunc_rtv,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3RetrieveKeyRecordAtr \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[5], "1", 1);
 return;
 }

The parameter list includes:

� kskey.Key_Store, T_kskey.Key_Store

This is the qualified name of the keystore file containing the key.

� endaout.KEYLAB

This is the key label.

� keyType_rtv, T_keyType_rtv

This is the algorithm type of key and is returned by the API.

� keySize_rtv, T_keySize_rtv

This is the size of the key and is returned by the API.

� mkid_rtv, T_mkid_rtv

This is the master key ID used to secure the keystore file and is returned by the API.

� Master_verification_value_rtv, T_Master_verification_value_rtv

This is the KVV for the master key at the time that the key was encrypted. This can be
compared to the current master key KVV to determine whether the key needs to be
translated.

� disFunc_rtv, T_disFunc_rtv

This is the disallowed function setting for the key and is returned by the API.
174 IBM System i Security: Protecting i5/OS Data with Encryption

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3rtvka
.htm

For our scenario we test that they key type, the key size, the Master key ID, and the Master
Key Verification Value are same in the keystore file as in the source and target systems. The
value of the disallowed function for the key on the source system should be all function
allowed “0”, and for the target system should be only decryption is allowed “13”
Example 11-18.

Example 11-18 Comparison of the key record attributes

if (keyType_rtv != T_keyType_rtv
 ||
 keySize_rtv != T_keySize_rtv
 ||
 mkid_rtv != T_mkid_rtv
 ||
 disFunc_rtv != Qc3_Disall_none
 ||
 T_disFunc_rtv != Qc3_All_dec_D
 ||
 memcmp (Master_verification_value_rtv,
 T_Master_verification_value_rtv,
 sizeof(Master_verification_value_rtv)) != 0)
 {
 printf (">>Qc3RetrieveKeyRecordAtr - compare \n");
 memcpy (argv[5], "1", 1);
 return;

}

Test Master Key API
This API is Qc3TestMasterKey in ILE and QC3TSTMK in OPM.

The master key verification value for the key on the source and target systems should be the
same value as the key verification value retrieved from the corresponding master key
(Example 11-19).

The retrieval is performed by the Test Master Key API, as depicted in Example 11-19.

Example 11-19 Retrieval of the key verification value for the specified master key

mstkv[0] = Qc3_MK_Current;

Qc3TestMasterKey (&mkid_rtv,
 &mstkv,
 &Master_verification_value_rtv,
Chapter 11. Cryptographic Services APIs method 175

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3rtvka.htm

 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>QcTestMasterKey\n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[5], "1", 1);
 return;
 }

Example 11-20 Comparison of the master key verification value

if (memcmp (Master_verification_value_rtv,
 T_Master_verification_value_rtv,
 sizeof(Master_verification_value_rtv)) != 0)
 {
 printf (">>QcTestMasterKey - compare\n");
 memcpy (argv[5], "1", 1);
 return;
 }

Generate Pseudorandom Number String API
This API is Qc3GenPRNs in ILE and QC3GENRN in OPM.

This API generates a pseudorandom binary stream, which we use for an Initialization Vector
(IV). The call to the Generate Pseudorandom Numbers API is depicted in Example 11-21.

Example 11-21 Qc3GenPRNs API

PRNtype = Qc3PRN_TYPE_NORMAL; /* Generate real random numbers*/
PRNparity = Qc3PRN_NO_PARITY; /* Do not adjust parity */
PRNlen = 16; /* Generate 16 bytes */

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3GenPRNs(IV,

PRNlen,
PRNtype,
PRNparity,

 &errCode);

if (errCode.Bytes_Available != 0)
 { printf (">>Qc3GenPRNs \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

The parameter list includes:

� IV

This is the 16-byte binary stream generated by the API.
176 IBM System i Security: Protecting i5/OS Data with Encryption

� PRNlen

This is the number of bytes that we wish to have the API return. We are generating a
128-bit stream (16 x 8 = 128 bit).

� PRNtype

The indicates whether the API is to generate a real or a test binary stream. We want a real
stream (the test stream uses preset values for key and seed).

� PRNParity

This specifies whether the API should modify the low-order bit to a specific parity. We
request no adjustment to the parity bit.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

Generate Pseudorandom Number String API

The second call to the Generate Pseudorandom Numbers API is depicted in Example 11-22.

Example 11-22 Generate binary stream

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
PRNlen = sizeof(Security_Data) - sizeof(HASH);

Qc3GenPRNs(Security_Data,
PRNlen,
PRNtype,
PRNparity,

 &errCode);

if (errCode.Bytes_Available != 0) {
 printf (">>Qc3GenPRNs \n");
 printf (" errCode.Exception_Id = %.7s\n",errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }
memcpy (&Security_Data[30], Security_Data, PRNlen);
memcpy (&Security_Data[45], Security_Data, PRNlen);

for(i=0;i<14;i++) {
 Security_Data[38+i] = Security_Data[16+i]^Security_Data[i];
 }

Note: This API is used to generate a random string to be used with secret data to provide
stronger security.
Chapter 11. Cryptographic Services APIs method 177

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

The secure field now looks similar to the data in Figure 11-20.

Figure 11-20 Sample data including pseudorandom binary stream

Calculate Hash API
This API is Qc3CalculateHash in ILE and QC3CALHA in OPM.

This API is used to generate a secure hash of the secure data (including the pseudorandom
data binary stream). Calling the Calculate Hash API is depicted in Example 11-23.

Example 11-23 Calculate hash for secure data and hints

csp = Qc3_Any_CSP; /* Use any crypto provider
Length_of_input_data = sizeof(Security_Data) - sizeof(HASH);
memset (Algorithm_description, 0, sizeof(Algorithm_description));
Algorithm_description[3] = Qc3_SHA1;

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3CalculateHash ((char*)&Security_Data,
 &Length_of_input_data,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &csp,
 NULL,
 Security_Data + Length_of_input_data,
 &errCode);

if (errCode.Bytes_Available != 0) {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n",errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

The parameter list includes:

� Security_Data

This is the data provided by the user on the command, combined with the pseudorandom
binary stream.

� Length_of_input_data

This is the length of the security data.

� “DATA0100”

This indicates to the API which format we wish to use. This format indicates that the
Security_Data parameter contains the data to be hashed rather than an array of pointers.

EVAL Security_Data: x 80
 00000 18D4E507 445185BF AB9964EA 93964915 - .MV.àée×¿rÀ?loñ.
 00010 E38889A2 4089A240 A2858399 85A318D4 - This is secret.M
 00020 E5074451 85BFFB5C 6CA504D8 27FF091C - V.àée×Û*%v.Q...
 00030 E7731635 BFAB9964 EA939649 15000000 - XË..×¿rÀ?loñ....
 00040 00000000 00000000 00000000 00000000 -
178 IBM System i Security: Protecting i5/OS Data with Encryption

� Algorithm_description

For SHA-1, this will be binary 00000002.

� “ALGD0500”

This indicates to the API which format we wish to use for the Algorithm_description
parameter. For SHA-1, this will be binary 00000002.

� csp

This indicates which cryptographic service provider will perform the hash
operation—software or hardware. We instruct i5/OS to select the appropriate CSP.

� Security_Data + Length_of_input_data

This is the area in which to store the returned hash value. The length of the hash is
defined by the hash algorithm. For SHA-1 this will be a character value of 20 bytes.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

After the hashing function, the Security_Data field appears in Figure 11-21.

Figure 11-21 Security_Data field after hashing

Encrypt Data API
This API is Qc3EncryptData in ILE and QC3ENCDT in OPM.

This API scrambles data into an unintelligible form. In this case, the key is stored in a
keystore file. The call to the Encrypt Data API is depicted in Example 11-24.

Example 11-24 Qc3EncryptData API

memset(&algD, 0, sizeof(algD)); /* Init alg description to null*/
algD.Block_Cipher_Alg = Qc3_AES; /* Set AES algorithm */
algD.Block_Length = 16; /* Block size is 16 */
algD.Mode = Qc3_CBC; /* Use cipher block chaining */
algD.Pad_Option = Qc3_No_Pad; /* Do not pad */
memcpy(algD.Init_Vector, IV, 16); /* Copy IV to alg description */

plainLen = sizeof(Security_Data);
cipherLen = sizeof(Encrypted_Data);

csp = Qc3_Any_CSP; /* Use any crypto provider */

memset(&errCode, 0, sizeof(errCode));

EVAL Security_Data: x 80
 00000 18D4E507 445185BF AB9964EA 93964915 - .MV.àée×¿rÀ?loñ.
 00010 E38889A2 4089A240 A2858399 85A318D4 - This is secret.M
 00020 E5074451 85BFFB5C 6CA504D8 27FF091C - V.àée×Û*%v.Q....
 00030 E7731635 BFAB9964 EA939649 15669545 - XË..×¿rÀ?loñÃÃná
 00040 B5C85997 3A713C78 0A7A0C12 5C73D507 - §Hßp.É.Ì.:..*ËN.
Chapter 11. Cryptographic Services APIs method 179

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

errCode.Bytes_Provided = sizeof(errCode);
Qc3EncryptData(Security_Data,
 &plainLen,
 Qc3_Data,
 (char*)&algD,
 Qc3_Alg_Block_Cipher,
 &kskey,
 Qc3_Key_KSLabel,
 &csp,
 NULL,
 Encrypted_Data,
 &cipherLen,
 &rtnLen,
 &errCode);

if (errCode.Bytes_Available != 0)
 {

printf (">>Qc3EncryptData \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

The parameter list includes:

� Security_Data

This is the data to be encrypted.

� plainLen

This is either the length of the data to be encrypted or the number of elements to be
encrypted, depending on the format supplied in the Qc3_Data parameter.

� Qc3_Data

This indicates that the Security_Data parameter contains the actual data to be encrypted
rather than an array of pointers to the data to be encrypted.

� algD

This is the algorithm and associated parameters for encrypting the data. The format of this
parameter is specified in the Qc3_Alg_Block_Cipher parameter.

� Qc3_Alg_Block_Cipher

This is the format of the algorithm description. In this case, it indicates that the hash
algorithm is specified.

� kskey

This is the key and associated parameters for encrypting the data. The format of this
parameter is specified in the Qc3_Key_KSLabel parameter.

� Qc3_Key_KSLabel

This is the format of the key description. In this case, it specifies that a keystore file and
label are supplied.

� csp

This indicates which cryptographic service provider will perform the encryption
operation—software or hardware. Using a character value of 0 instructs i5/OS to select
the appropriate CSP.
180 IBM System i Security: Protecting i5/OS Data with Encryption

� NULL (cryptographic device name)

This is the associated hardware device if a hardware CSP is selected. Otherwise, this
parameter must be blank or null.

� Encrypted_Data

This is the encrypted data returned by the API.

� cipherLen

This is the length of the Encrypted_Data parameter.

� rtnLen

This is the length of the encrypted data returned by the API in the Encrypted Data
parameter.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

After the encryption function, the Encrypted_Data field appears as shown in Figure 11-22.

Figure 11-22 Encrypted_Data field after encryption

Convert encrypted field and IV record to Base64 form
This step is to convert the encrypted field and IV record to Base64 form so that it is readable
(Example 11-25).

Example 11-25 Encrypted data and IV to Base64

len_Base64 = to_Base64 (IV, sizeof(IV),endaout.IV64, len_Base64);
len_Base64 = to_Base64(Encrypted_Data, rtnLen, endaout.ENC64, len_Base64);

Calculate HASH API
This API is Qc3CalculateHash in ILE and QC3CALHA in OPM.

This API is used to generate a secure hash of the entire record (including the plain and
encrypted data). The call to the Calculate Hash API is as depicted in Example 11-26.

Example 11-26 Qc3CalculateHash API for all record

memset (Algorithm_description, 0, sizeof(Algorithm_description));
Algorithm_description[3] = Qc3_SHA1;

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

EVAL Encrypted_Data: x 80
 00000 28021087 3DE95597 E8DC0691 C8EB3FDC - ...g.ZípYü.jHÔ.ü
 00010 10A1BC33 6CE40EE3 FEBB1FC1 71D7D903 - .~¯.%U.TÚ].AÉPR.
 00020 91496EB6 929E3839 B00087F8 D9327F82 - jñ>¶kÆ..^.g8R."b
 00030 B4BE8852 F62074F0 0741C0F2 87FD35EF - ©´hê6.È0. {2gÙ.Õ
 00040 82497726 A55A8EB2 4B8E1911 D60DC87B - bñÏ.v!þ¥.þ..O.H#
Chapter 11. Cryptographic Services APIs method 181

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Qc3CalculateHash ((char*)&endaout.FNAME,
 &Length_of_input_data,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &csp,
 NULL,
 HASH,
 &errCode);

if (errCode.Bytes_Available != 0)
{
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

The parameter list includes:

� endaout.FNAME

This is the encrypted customer data record.

� Length_of_input_data

This is the length of the encrypted customer data record.

� “DATA0100”

This indicates to the API the format of the input data. This format indicates that the
endaout.FNAME parameter contains the data to be hashed, rather than an array of
pointers.

� Algorithm_description

For SHA-1, this will be binary 00000002.

� “ALGD0500”

This indicates to the API the format of the Algorithm_description parameter. For SHA-1,
this will be binary 00000002.

� csp

This indicates which cryptographic service provider will perform the hash
operation—software or hardware. We instruct i5/OS to select the appropriate CSP.

� HASH

This is the area in which to store the returned hash value. The length of the hash is
defined by the hash algorithm. For SHA-1 this will be a character value of 20 bytes.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.
182 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Storing customer data in file ENCDATA
The final step is to store the record in the customer file (ENCDATA). This is depicted in
Example 11-27.

Example 11-27 Store customer data to ENCDATA file

if ((endaPtr = _Ropen(DataFile, "rr+, riofb=N")) == NULL) {
 printf (">>_Ropen ENCDATA \n");
 printf (" Open of ENCDATA file failed errno %d.\n",errno);
 memcpy (argv[5], "1", 1);
 _Rclose(endaPtr);
 return;
 }
if ((_Rwrite(endaPtr , &endaout,
 sizeof(endaout)))->num_bytes < sizeof(endaout)) {
 printf (">>_Rwrite ENCDATA \n");
 printf (" _Rwrite of ENCDATA file failed errno %d.\n",errno);
 memcpy (argv[5], "1", 1);
 _Rclose(endaPtr);
 return;
 }
_Rclose(endaPtr);
return;

What the customer record looks like
We assume that all of the information needed to decrypt data will be stored in a record in the
ENCDATA file (Figure 11-23), and that the file will be secured correctly using i5/OS
object-level security. In our example, the keystore files for the source and target systems, as
well as the ENCDATA data file, were created with public authority *EXCLUDE. Access to this
file may be accomplished via private or adopted authority to both files.

Figure 11-23 Record structure

The record includes Example 11-28 on page 184:

� First name (FNAME)

This is also an index field.

� Last name (LNAME)

This is also an index field.

� Information data (ADRES, CITY, COUNTRY, STATE, ZIP, PHONE)

FNAME IV64 ENC64 KLABEL KSFILE Time Hash64InfoLNAME

Random Number Secret data hash

hash hash

Hash64
Hash64

Encrypted data field

Database record in file ENCDATA

Random Number
Chapter 11. Cryptographic Services APIs method 183

� Initialization Vector (IV)

This value is converted to Base64 format to permit display.

� Private customer data,

This data is encrypted and converted to Base64 format to permit display. The string
comprises:

– Pseudorandom number binary stream.
– Secure data
– Hash of pseudorandom number, secure data

� Key Label LABEL_04

� Keystore file name for target system

� The time stamp of the record

� HASH of the entire record

The hash is also converted to Base64 format to permit display.

The customer record data is depicted in Example 11-28.

Example 11-28 Record in database file ENCDATA

EVAL endaout: x 340
 00000 E3969440 40404040 40404040 404040C2 - Tom B
 00010 9389A2A2 40404040 40404040 4040F1F2 - liss 12
 00020 F3F240D4 81979385 40E2A34B 40404040 - 32 Maple St.
 00030 4040C195 A8A396A6 95404040 40404040 - Anytown
 00040 40404040 4040E4E2 C1404040 40404040 - USA
 00050 40404040 40404040 4040D4D5 F2F5F6F1 - MN2561
 00060 F1F3F2F5 F6F591C3 A797C3F8 F2C48888 - 132565jCxpC82Dhh
 00070 C2D783F9 96F281E7 F1C8D1A6 7E7ED2C1 - BPc9o2aX1HJw==KA
 00080 C9D888A9 F397E5E9 8696F3C1 81D9A8D6 - IQhz3pVZfo3AaRyO
 00090 A261F3C2 C388A5C4 D5A2F5C1 F7916199 - s/3BChvDNs5A7j/r
 000A0 A286A6E7 C8E7F2D8 D6D9E2E6 F6F29297 - sfwXHX2QORSW62kp
 000B0 F4F4D682 C1C18861 91E9D495 4EC3A3D3 - 44ObAAh/jZMn+CtL
 000C0 F6C9E4A5 E88784D7 C1C8D883 C4A88861 - 6IUvYgdPAHQcDyh/

000D0 F0F1F7F4 D1D184A8 8193E696 F6A8E2F4 - 0174JJdyalWo6yS4
000E0 F4E9C584 E8D5A8C8 A27ED3C1 C2C5D36D - 4ZEdYNyHs=LABEL_
000F0 F0F44040 40404040 40404040 40404040 - 04
00100 40404040 40404040 4040D2C5 E8C6C9D3 - KEYFIL
00110 C5E34040 D9F7F3F9 F96DC16D D7C94040 - ET R7399_API 20
00120 F0F760F0 F560F2F0 60F1F94B F1F24BF0 - 07-05-20-19.12.0
00130 F04BF8F8 F0F0F0F0 A286E993 D1A6F982 - 0.880000sfZlJw9b
00140 A6A7E296 A2C1E6A7 97979998 88E382F7 - wxSosAWxpprqhTb7
00150 F5A3877E - 5tg=............
184 IBM System i Security: Protecting i5/OS Data with Encryption

Running SET_DATA command step summary
We have now taken customer data (some public, some private) and encrypted and stored it in
a database file (ENCDATA). The process that we used is depicted in Figure 11-24.

Figure 11-24 Encryption scenario

11.3.4 Decrypt data on source system: GET_DATA command

This section provides the steps to encrypt/decrypt the secret data in the ENCDATA database
file on the same system. We have now encrypted data in the database file ENCDATA and we
want to test whether the information was stored in good order.

Development system Data encrypted on the Source system

MSTRKVV file

R7399_API/ENCDATA

1. Qc3GenPRNs

2. Qc3GenPRNs

Random Number

Binary Stream

3. Qc3EncryptData

DATA are written to ENCDATA file

Key Store file(Target)
KEYFILET

key encrypted under MK #8 disall "D"Label_04

Label_04

Key store file(Source)
KEYFILES

KSFILE

Secret data

SET_DATA KEYLABEL(LABEL_04)
KEYFILES(R7399_API/KEYFILES)
KEYFILET(R7399_API/KEYFILET)
ENCDATA(R7399_API/ENCDATA)
FNAME(Tom)
LNAME(Bliss)
ADRES('1232 Maple St.')
CITY('Anytown')
COUNTRY('USA')
STATE(MN)
ZIP(25611)
PHONE(32565)
SSN('This is secret')

key encrypted under MK #8 disall "0"Label_04

Enc Key

MK #8

Secrete data

hash

IV64
r+bWc

 FNAME LNAME
 Tom Bliss

ENC64
X+/hLw

KLABEL
LABEL_04

HASH64
HMmY9N3KSFILE

iSeries

 MSTRNUM KVV TIME USER
 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.21.28.209000 MILANK
 1 0XkNLzhc7PgzoRdMCPJsCjOol+8= 2007-05-18-00.30.25.279000 MILANK
 5 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.30.41.549000 MILANK

Time

To_Base64(SHA-1(FNAME-Time))
IV to Base64

4. Qc3CalculateHash

Encrypt data

Random Number

Binary Stream
Chapter 11. Cryptographic Services APIs method 185

Executing GET_DATA command
This command reads data (including private information) from the database file ENCDATA on
the source system, and appears as in Figure 11-25. Although this type of function is more
commonly performed via an application program with a display format, we created a
command-based interface to allow us to focus on the cryptographic functionality.

Figure 11-25 Command Get Data

The command requires you to supply the following information:

� Data file and library name

We specify the fully qualified file name of the database file where the data was stored.

� First and last name

The program uses the first and the last name as the database key field of the database file
and reads from this database file record. The structure of this record is shown in
Figure 11-23 on page 183.

Upon invocation, the command calls the processing program (GET_DATA) that controls the
command function. The overview of this function is to check object existence of the database
file, and then call the program (DEC_DATA) to obtain the secret information of the desired
customer.

Understanding GET_DATA command

This section provides background information about the GET_DATA command.

Decrypting data to obtain desired information
Our GET_DATA command requires that the user provide the fully qualified file name of the
database file where the desired information was stored, and, of course, the first and the last
name of the customer.

 Get Data (GET_DATA)

Type choices, press Enter.

Data File (DF) ENCDATA Name
 Library Name R7399_API Name, *CURLIB
First Name (FN) Tom
Last Name (LN) Bliss

Note: This section provides a detailed and structural analysis of the GET_DATA
command. If you want to quickly run the entire application to have a complete view, you
may skip to 11.3.5, “Decrypt data on target system” on page 194. However, we strongly
recommend the you to come back to this point and read the rest of section carefully to
understand the logic behind this.
186 IBM System i Security: Protecting i5/OS Data with Encryption

We supply the information as shown in Figure 11-26.

Figure 11-26 Command Get Data

The command passes the parameter data to the command processing program GET_DATA.
This program calls the GET_DATA program to check for the existence of the file ENCDATA
and then calls the program DEC_DATA to obtain secret information of the desired customer.
At the end, the program displays a completion message, as shown in Figure 11-27.

Figure 11-27 Message about decryption data

 Get Data (GET_DATA)

 Type choices, press Enter.

 Data File (DF) ENCDATA Name
 Library Name R7399_API Name, *CURLIB
 First Name Tom
 Last Name Bliss

 SecureData = This is secret
Press ENTER to end terminal session.
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=
 F23=Set initial menu
Data was decrypted
Chapter 11. Cryptographic Services APIs method 187

The overall structure of the GET_DATA command function is depicted in Figure 11-28.

Figure 11-28 Structure of Get Customer Data (GET_DATA) CL command

Retrieving record from ENCDATA file
The program DEC_DATA uses the first name and the last name as the database key field to
retrieve the record from the ENCDATA file (Example 11-29).

Example 11-29 Retrieve record from ENCFILE

memcpy(Data_File, argv[1], sizeof(Data_File));
memset(DataFile, 0, sizeof(DataFile));

for (i=10,j= 0; i < 20 && Data_File[i] != ' ';
 DataFile[j] = Data_File[i], ++i, ++j);
 DataFile[j] = '/';
 ++j;
for (i= 0 ; i < 10 && Data_File[i] != ' ';
 DataFile[j] = Data_File[i], ++i, ++j);

memcpy(endakey.FNAME, argv[2], sizeof(endaout.FNAME));
memcpy(endakey.LNAME, argv[3], sizeof(endaout.LNAME));
memcpy(argv[3], " ", 1);
if ((endaPtr = _Ropen(DataFile, "rr+, riofb=N")) == NULL) {
 printf (">>_Ropen ENCDATA \n");

Structure of the programs

GET_DATA

GET_DATA
*CMD

GET_DATA
CL program

DEC_DATA
C program

1/ Qc3RetrieveKeyRecordAtr - Retriev Key record Attributes

2/ Qc3CalculateHash for all record

3/ Qc3DecryptData decrypt secret data

4/ Qc3CalculateHash of sercet data

Key store file(source)
R7399_API/KEYFILES

key encrypted under MK #8 disall "0"Label_04

ENCDATA(R7399_API/ENCDATA)

FNAME IV64 ENC64 KLABEL KSFILE Time Hash64InfoLNAME

Secret data(Base64)

Hash(Base64)

decryption

Data was decrypted

Hash os secret data

SecureData = This is secret

Retrieve key record attributes
188 IBM System i Security: Protecting i5/OS Data with Encryption

 printf (" Open of ENCDATA file failed errno %d.\n" , errno);
 memcpy (argv[4], "1", 1);
 _Rclose(endaPtr);
 return;
 }
dbendaPtr = _Rreadk(endaPtr, &endain, sizeof(endain), __KEY_EQ,
 &endakey, sizeof(endakey));
if (endaPtr->riofb.num_bytes == 0) {
 printf (">>Rreadk ENCDATA \n");
 printf (" No data %.15s in ENCDATA\n", endaout.FNAME);
 memcpy (argv[4], "1", 1);
 _Rclose(endaPtr);
 return;
 }
_Rclose(endaPtr);

Used APIs
To decrypt data, we utilize the APIs discussed in this section.

Retrieve Key Record Attributes API
This API is Qc3RetrieveKeyRecordAtr in ILE and QC3RTVKA in OPM.

The Retrieve Key Record Attributes API retrieves the key type and key size of a key that is
stored in a keystore file. Using key label KLABEL and the name of the keystore file KSFILE
written into the record of database file ENCDATA, we retrieve key record attributes. The
retrieval is performed by the Retrieve Key Record Attributes API, as depicted in
Example 11-30. This is for testing purposes for our system to ensure that the Key Label entry
exists in the keystore file.

Example 11-30 Qc3RetrieveKeyRecordAtr API

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3RetrieveKeyRecordAtr(endain.QKSFN,
 endain.KEYLAB,
 &keyType_rtv,
 &keySize_rtv,
 &mkid_rtv,

Master_verification_value_rtv,
 &disFunc_rtv,
 &errCode);

if (errCode.Bytes_Available != 0) {
 printf (">>Qc3RetrieveKeyRecordAtr \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return;
 }

For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3rtvka
.htm
Chapter 11. Cryptographic Services APIs method 189

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3rtvka.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?topic=/apis/qc3rtvka.htm

Calculate Hash API
This API is Qc3CalculateHash in ILE and QC3CALHA in OPM.

This API is used to generate a secure hash of the entire record (including the plain and
encrypted data). The call to the Calculate Hash API is depicted in Example 11-31.

Example 11-31 Calculate Hash for entire record

csp = Qc3_Any_CSP;
Length_of_input_data = sizeof(endaout) - sizeof(endaout.HASH64);

memset (Algorithm_description, 0, sizeof(Algorithm_description));
Algorithm_description[3] = Qc3_SHA1;
memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3CalculateHash ((char*)&endain.FNAME,
 &Length_of_input_data,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &csp,
 NULL,
 HASH,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

We transform this hash from a binary stream to Base64 format and compare the value with
the written value in the database file ENCDATA, as shown in Example 11-32.

Example 11-32 Compare hash value of the entire record

len_Base64 = to_Base64(HASH, sizeof(HASH), endaout.HASH64, len_Base64);
if (memcmp(endaout.HASH64, endain.HASH64, len_Base64) != 0)
 {
 printf (">>HASH record error \n");
 memcpy (argv[4], "1", 1);
 return ERROR;
 }

Decrypt Data API
This API is Qc3DecryptData in ILE and QC3DECDT in OPM.
190 IBM System i Security: Protecting i5/OS Data with Encryption

This API restores encrypted data to a clear (intelligible) form. If both hash values are the
same, the program converts IV from Base64 to binary and decrypts data with the Decrypt
Data API, depicted in Example 11-33.

Example 11-33 Qc3DecryptData API for DEC_DATA

memset(&algD, 0, sizeof(algD)); /* Init alg description to null*/
algD.Block_Cipher_Alg = Qc3_AES; /* Set AES algorithm */
algD.Block_Length = 16; /* Block size is 16 */
algD.Mode = Qc3_CBC; /* Use cipher block chaining */
algD.Pad_Option = Qc3_No_Pad; /* Do not pad */

len_text = Base64_to(endain.IV64 , sizeof(endain.IV64),

algD.Init_Vector,len_text);
len_text = Base64_to(endain.ENC64, sizeof(endain.ENC64), n_Encrypted len_text);
cipherLen = sizeof(n_Security);

memset(&kskey, '\0' , sizeof(kskey));
memcpy(kskey.Key_Store, endain.QKSFN, sizeof(endain.QKSFN));
memcpy(kskey.Record_Label, endain.KEYLAB, sizeof(endain.KEYLAB));

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3DecryptData(n_Encrypted,
 &len_text,
 (char*)&algD,
 Qc3_Alg_Block_Cipher,
 &kskey,
 Qc3_Key_KSLabel,
 &csp,
 NULL,
 n_Security,
 &cipherLen,
 &rtnLen,
 &errCode);

if (errCode.Bytes_Available != 0) {
 printf (">>Qc3EncryptData \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

The parameter list includes:

� n_Encrypted

This is the data to be decrypted.

� len_text

This is the length of the encrypted data.

� algD

The algorithm and associated parameters for decrypting the data. The format of the
algorithm description is specified by the Qc3_Alg_Block_Cipher format name parameter.
Chapter 11. Cryptographic Services APIs method 191

� Qc3_Alg_Block_Cipher

The algorithm description format name indicates the format of the algorithm description.

� kskey

This is the key and associated parameters for decrypting the data. The format of this
parameter is specified in the Qc3_Key_KSLabel parameter.

� Qc3_Key_KSLabel

This is the key description format name. In this case, it specifies that a keystore file and
label are supplied.

� csp

This indicates which cryptographic service provider will perform the encryption
operation—software or hardware. Using a character value of 0 instructs i5/OS to select
the appropriate CSP.

� NULL

This is the associated hardware device if a hardware CSP is selected. Otherwise, this
parameter must be blank or null.

� n_Security

This is the clear data returned by the API.

� cipherLen

This is the length of area provided for the clear data. To ensure sufficient space, specify
an area at least as large as the length of encrypted data. If the length of area provided for
the clear data is too small, an error will be generated and no data will be returned in the
clear data parameter.

� rtnLen

Length of clear data returned.

� errCode

Error code I/O Char(*). The structure in which to return error information.

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then select Programming → Application programming interfaces → API concepts.

Calculate Hash API
This API is used again to generate a secure hash of the encrypted part of the record. The call
to the Calculate Hash API is depicted in Example 11-34.

Example 11-34 Calculate hash for encrypted data

Length_of_input_data = sizeof(n_Security) - sizeof(HASH);
memset (Algorithm_description, 0, sizeof(Algorithm_description));
Algorithm_description[3] = Qc3_SHA1;

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);
Qc3CalculateHash ((char*)&n_Security,
 &Length_of_input_data,
 "DATA0100",
192 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

 (char*)&Algorithm_description,
 "ALGD0500",
 &csp,
 NULL,
 HASH,
 &errCode);

if (errCode.Bytes_Available != 0) {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memcpy (argv[4], "1", 1);
 return;
 }

Verification process
An equal comparison of calculated hash and the hash retrieved from the record confirms that
the secret data that they possess is the same as that which we encrypted see
Example 11-35.

Example 11-35 Comparison of the hash

if (memcmp(&n_Security[60], HASH, sizeof(HASH)) != 0) {
 printf (">>HASH error secret data \n");
 memcpy (argv[4], "1", 1);
 return;
 }

If both values are the same, the secret data is displayed as in Figure 11-29.

Figure 11-29 Secret data

Running GET_DATA command step summary
We have now taken secret customer data from the database file (ENCDATA) and decrypted
it.

SecureData = This is secret
Press ENTER to end terminal session.
Chapter 11. Cryptographic Services APIs method 193

The process that we used is depicted in Figure 11-30.

Figure 11-30 Decryption scenario

11.3.5 Decrypt data on target system

We assume that the customer data in file ENCDATA was saved and sent to the target system
through a secure channel, and then restored on the target system. The sensitive part of the
customer data was encrypted, and without the corresponding keys on the target system the
data is unreadable.

We have a keystore file KEYFILET with keys that only allow decryption. Although the
keystore file is encrypted under the master key (MK) on the source system, we recommend
that you send this file through a different secure channel.

The keystore file is encrypted under MK #8 on the source system. On the target system, the
MK should be temporarily recreated using the same master key ID (#8) and with the same
passphrases. To recreate the MK we use the command SET_MSTR_K. In our scenario we
next use program TRANS_KEY to translate keys stored in the specified keystore files
KEYFILET to a new target MK number, #1. We do this because we do not want the source
system to know our master key.

If the customer does not want to recreate the MK and translate the keys in the keystore file on
the target system, we can perform recreation and translation on the source system. We
recreate the MK with the same number and with the same passphrase as on the target

Development system Data decrypted on the Source system

ENCDATA(R7399_API/ENCDATA)

2. Qc3CalculateHash

to_Base64(SHA-1(FNAME-Time))
and

COMPARE

Key Store file(Target)
KEYFILET

key encrypted under MK #8 disall "D"Label_04
3. Qc3DecryptData

Use key to decrypt

Decryption(Base64_to(AES-CBC)

GET_DATA ENCDATA(R7399_API/ENCDATA)
FNAME(Tom)
LNAME(Bliss)

>
 SecureData = This is secret
 Press ENTER to end terminal session.

MK #8

Random Number Secret data hash

IV64
r+bWc

 FNAME LNAME
 Tom Bliss

ENC64
X+/hLw

KLABEL
LABEL_04

HASH64
HMmY9N3KSFILE Time

4. Qc3CalculateHash

Compare to hash

1. Qc3RetrieveKeyRecordAtr

Key Store File Key Store File

Retrieve key

 MSTRNUM KVV TIME
 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.21.28.209000
 1 0XkNLzhc7PgzoRdMCPJsCjOol+8= 2007-05-18-00.30.25.279000
 5 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2007-05-18-00.30.41.549000

MSTRKVV fileiSeries

Random Number
194 IBM System i Security: Protecting i5/OS Data with Encryption

system. We use the command TRANS_KEY, and then we only save and restore data file
ENCDATA and keystore file KEYFILET.

Now we have accessible keys in the keystore file KEYFILET encrypted under the target
system MK. And now we can use the same command GET_DATA as we used on the source
system for retrieving the customer’s secret information.

Creating temporary master key on target system
The SET_MSTR_K command controls the recreation of the master key for use in our
application on the target system. We can use this command to create the target MK with
number #1 if we have not already done so. We also use the SET_MSTR_K command to
recreate MK #8 on the target system.

Enter the following command on the i5/OS command entry line:

SET_MSTR_K

Then press F4 for a prompt, as shown in Figure 11-31.

Figure 11-31 Recreate master key on the target system

For detailed description of the SET_MSTR_K command, refer to “Understanding
SET_MSTR_K command” on page 145.

Key translation
Next we execute the Translate Key Store (TRANS_KEY) command. This command
translates keys stored in the specified keystore file KEYFILET to another master key, and
appears as in Figure 11-32.

Figure 11-32 Translate keys stored in the keystore file KEYFILET to the MK #1

This command uses the following API.

 Set Master Key (SET_MSTR_K)

Type choices, press Enter.

Master Key ID 8 1, 2, 3, 4, 5, 6, 7, 8
Clear Master Key Version *NEW *NEW, *OLD, *BOTH
Passphrase Part 1 (25 Char) . .
 Reenter to confirm
Passphrase Part 2 (25 Char) . .
 Reenter to confirm
Passphrase Part 3 (25 Char) . .
 Reenter to confirm
SSL Required *YES *YES, *NO

 Translate Key Store (TRANS_KEY)

 Type choices, press Enter.

 New Master Key ID 1 1, 2, 3, 4, 5, 6, 7, 8
 Key Store file(KSF) KEYFILET Name
 Library Name R7399_API Name, *CURLIB
Chapter 11. Cryptographic Services APIs method 195

Translate Key Store API
This API is Qc3TranslateKeyStore in ILE and QC3TRNKS in OPM.

The Translate Key Store API translates keys stored in the specified keystore files to another
master key, or if the same master key is specified, to the current version of the master key. We
translate keys stored in the keystore file KEYFILEK to the target MK number #1
(Example 11-36).

Example 11-36 Translate Key Store API

*++argv;
switch (*argv[0]){
 case '1' :
 mkid = Qc3_Master_Key_1;
 break;
 case '2' :
 mkid = Qc3_Master_Key_2;
 break;
 case '3' :
 mkid = Qc3_Master_Key_3;
 break;
 case '4' :
 mkid = Qc3_Master_Key_4;
 break;
 case '5' :
 mkid = Qc3_Master_Key_5;
 break;

case '6' :
 mkid = Qc3_Master_Key_6;
 break;
 case '7' :
 mkid = Qc3_Master_Key_7;
 break;
 default:
 mkid = Qc3_Master_Key_8;
break; }

*++argv;
memcpy(kstore.key_store, argv[0], 20);
kstore.number = 1;

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Available = sizeof(errCode);

Qc3TranslateKeyStore (&kstore,
 &mkid,
 &errCode);

if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3TranslateKeyStore< \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 }
196 IBM System i Security: Protecting i5/OS Data with Encryption

The parameter list includes:

� kstore

A structure containing the number of keystore files to encrypt followed by a list of keystore
file names.

� mkid

The master key under which the keys will be re-encrypted.

� errCode

Error code structure (output parameter). This is a standard API return parameter. For
more information about working with API error handling, refer to the IBM Information
Center Web site:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

Then follow Programming → Application programming interfaces → API concepts →
API parameters → Error code parameter to reach the page.

Decrypting data on target system: GET_DATA command
So far, we have translated keys stored in the keystore files KEYFILET to the target MK #1,
and now we can use the same command GET_DATA as we use on the source system for
retrieving secret customer information (Figure 11-33).

Figure 11-33 Retrieve secret data on the target system

 Get Data (GET_DATA)

Data File (DF) ENCDATA Name
 Library Name R7399_API Name, *CURLIB
First Name (FN) > Tom
Last Name (LN) > Bliss
Chapter 11. Cryptographic Services APIs method 197

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

The steps are outlined in Figure 11-34.

Figure 11-34 Scenario decryption data on the target system

11.3.6 Execution example of scenario application

This section provides an execution example of a scenario application. This might sound
redundant, and it is in a way, but it gives you a more hands-on type of look and feel to the
application along with actual messages that you might see. Consider this as a summary of an
application description with tagged along messages.

All programs and their source code are stored in the library R7399_API.

1. Restore library R7399_CCA from the downloaded save file to the source system.

2. Add the library R7399_API to the user portion of the library list for the job:

ADDLIBLE LIB(R7399_API)

3. Compile the CL programs CRT_MK, CRT_SK, CRT_SET, and CRT_GET on the source
system:

CRTBNDCL PGM(R7399_API/CRT_MK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_MK) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

CRTBNDCL PGM(R7399_API/CRT_SK) SRCFILE(R7399_API/QCLSRC)

 Data decrypted on the Target system

ENCDATA(R7399_API/ENCDATA)

3. Qc3CalculateHash

Key store file
KEYFILES(R7399_API/KEYFILET)

Key Store File

key encrypted under MK #8 disall "D"Label_04
4. Qc3DecryptData

U
se key to decrypt

Decryption(Base64_to(AES-CBC)

GET_DATA ENCDATA(R7399_API/ENCDATA)
FNAME(Tom)
LNAME(Bliss)

>
 SecureData = This is secret
 Press ENTER to end terminal session.

MK #1

Random Number Secret data hash

 FNAME LNAME
 Tom Bliss

HASH64
HMmY9N3KSFILE Time

5. Qc3CalculateHash

Compare to hash

2. Qc3RetrieveKeyRecordAtr

KLABEL Key Store File

Development on the Source

Key store file
KEYFILES(R7399_API/KEYFILET)

key encrypted under MK #8 disall "D"Label_04

1. Move key store file to the
Target system

2. Recreate MK #8 to temporary
MK #8 on Target

1.Qc3ClearMasterKey

2.Qc3LoadMasterKeyPart

3.Qc3LoadMasterKeyPart

4.Qc3LoadMasterKeyPart

5.Qc3SetMasterKey

Temporary
MK #8

1. Qc3TranslateKeyStore

Translate key store from
#MK8 to #MK1

Translate key store from
#MKn to #MKw

Translate key store from
#MK8 to #M1

iS eries

iSer ies

ENC64
X+/hLw

KLABEL
LABEL_04

IV64
r+bWc

to_Base64(SHA-1(FNAME-Time))
and

COMPARE

MK #8

Random Number

Note: Before you try to follow the instructions in this chapter, be sure that you are not on
the production i5/OS server or on the system where the key management is created for
another real purpose.

Note: When we restore library R7399_API, all source code programs needed for our
scenario are in this library.
198 IBM System i Security: Protecting i5/OS Data with Encryption

 SRCMBR(CRT_SK) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

CRTBNDCL PGM(R7399_API/CRT_SET) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_SET) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

CRTBNDCL PGM(R7399_API/CRT_GET) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_GET) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

4. Compile the CL programs CRT_MK, CRT_GET and CRT_TK on the target system.

CRTBNDCL PGM(R7399_API/CRT_MK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_MK) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

CRTBNDCL PGM(R7399_API/CRT_GET) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_GET) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

CRTBNDCL PGM(R7399_API/CRT_TK) SRCFILE(R7399_API/QCLSRC)
 SRCMBR(CRT_TK) TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

5. To create all programs for our scenario on the source system, start the programs:

CALL CRT_MK
CALL CRT_SK
CALL CRT_SET
CALL CRT_GET

6. To create all programs for our scenario on the target system, start the programs:

CALL CRT_MK
CALL CRT_TK
CALL CRT_GET

7. On the source system use the SET_MSTR_K CL command to create Master Key #8 and
enter secret strings for the three parts of the passphrase (<pass1a>, <pass2a>,
<pass3a>) for MK #8.

SET_MSTR_K MSTRD(8) P1_1(<pass1a>) P1_2(<pass1a>)
 P2_1(<pass2a>) P2_2(<pass2a>)
 P3_1(<pass3a>) P3_2(<pass3a>)
 SSL(*YES)

Base64(SHA-1(KVV)(28) = pqUBIqLfyThueZ+QmeEGvLI0WU0=
Press ENTER to end terminal session.

8. Run Query to see information about generated MK:

RUNQRY QRY(*NONE) QRYFILE((R7399_API/MSTRKVV))

Figure 11-35 RUNQRY QRY(*NONE) QRYFILE((R7399_API/MSTRKVV))

 Display Report
 Report width :
Position to line Shift to column
Line +....1....+....2....+....3....+....4....+....5....+....6....+
 MSTRNUM KVV TIME
000001 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2008-02-25-13.35.46.941000
****** ******** End of report ********
Chapter 11. Cryptographic Services APIs method 199

9. Generate two identical symmetric keys with different disallowed functions. Store the first
key with disallowed function “0” to the keystore file KEYFILES and the second key with
disallowed function D to the keystore file KEYFILET.

GEN_SYMKEY KEYLABEL(LABEL_04) MSTRK(8)

10.Run Query to see information about the generated keys in our scenario:

RUNQRY QRY(*NONE) QRYFILE((R7399_API/INFOFILE))

Figure 11-36 RUNQRY QRY(*NONE) QRYFILE((R7399_API/INFOFILE))

11.Write data using command SET_DATA (including private information) to the database file
ENCDATA on the source system:

SET_DATA KEYLABEL(LABEL_04)
 FNAME(Tom)
 LNAME(Bliss)
 ADRES('1232 Maple St.')
 CITY(Oronoko)
 COUNTRY(USA)
 STATE(MN)
 ZIP(12346)
 PHONE(23453)
 SSN('This is secret')

Key Label LABEL_04 in R7399_API/KEYFILES was used to encrypt the data

12.Run Query to see customer information written in the database file ENCDATA in the
previous step:

RUNQRY QRY(*NONE) QRYFILE((R7399_API/ENCDATA))

Figure 11-37 RUNQRY QRY(*NONE) QRYFILE((R7399_API/ENCDATA))

13.To test whether the information was stored in database file ENCDATA in good order on
the source system we use the CL command GET_DATA:

GET_DATA FNAME(Tom)
 LNAME(Bliss)

SecureData = This is secret
Press ENTER to end terminal session.

14.Send the data file ENCDATA with customer data and keystore file KEYFILET to the target
system.

Position to line Shift to column
Line
....+....1....+....2....+....3....+....4....+....5....+....6....+....7
 KEYLABEL KEYTYPE KEYSIZE SMK SDISALL
000001 LABEL_04 AES-CBC 16 8 0
****** ******** End of report ********

Position to line Shift to column
 Line +....1....+....2....+....3....+....4....+....5....+....6...
 FNAME LNAME ADRES CITY
 000001 Tom Bliss 1232 Maple St. Oronoko
 ****** ******** End of report ********
200 IBM System i Security: Protecting i5/OS Data with Encryption

15.On the target system recreate MK #8 as a temporary MK. For this purpose use CL
command SET_STR_K and enter the same secret strings for three parts of the
passphrase (<pass1a>, <pass2a>, <pass3a>) for MK #8 as in step 7 on page 199:

SET_MSTR_K MSTRD(8) P1_1(<pass1a>) P1_2(<pass1a>)
 P2_1(<pass2a>) P2_2(<pass2a>)
 P3_1(<pass3a>) P3_2(<pass3a>)
 SSL(*YES)

Base64(SHA-1(KVV)(28) = pqUBIqLfyThueZ+QmeEGvLI0WU0=
Press ENTER to end terminal session.

16.On the target system create MK #1. For this purpose use CL command SET_STR_K and
enter a secret string for three parts of the passphrase (<pass1b>, <pass2b>, <pass3b>)
for MK #1.

SET_MSTR_K MSTRD(1) P1_1(<pass1b>) P1_2(<pass1b>)
 P2_1(<pass2b>) P2_2(<pass2b>)
 P3_1(<pass3b>) P3_2(<pass3b>)
 SSL(*YES)

Base64(SHA-1(KVV)(28) = dEOlmzHaOfpNfO7qI/RR/nOimag=
Press ENTER to end terminal session.

17.To translate keys stored in the keystore file ENCDATA to the MK #1 we utilize the
following CL command TRANS_KEY:

TRANS_KEY MSTRD(1) KEYSTORE(R7399_API/KEYFILET)

Key Store file re-encrypted under Master #1
Press ENTER to end terminal session.

18.On the target system we use CL command GET_DATA to see the secret customer
information:

GET_DATA FNAME(Tom)
 LNAME(Bliss)

SecureData = This is secret
Press ENTER to end terminal session.
Chapter 11. Cryptographic Services APIs method 201

11.4 Another scenario: for external UDFs functions

In our previous scenario, we created database file ENCDATA and put in some customer’s
information containing secret data. Each customer has one record, and its structure looks like
Figure 11-38. The DDS source code of the database file ENCDATA is shown in Figure 11-39
on page 203, and the FNAME and LNAME are used as the database key fields.

Figure 11-38 Structure of database record in the data base ENCDATA

We put in a customer’s information by using CL command SET_DATA, for example:

SET_DATA KEYLABEL(LABEL_04)
 KEYFILES(R7399_API/KEYFILES)
 KEYFILET(R7399_API/KEYFILET)
 ENCDATA(R7399_API/ENCDATA)
 INFODATA(R7399_API/INFOFILE)
 FNAME(Tom) LNAME(Bliss)
 ADRES('1232 Maple St.')
 CITY('Anytown')
 COUNTRY('USA')
 STATE(MN) ZIP(16100)
 PHONE(11111)
 SSN(123123123123)

FNAME IV64 ENC64 KLABEL KSFILE Time Hash64InfoLNAME

Random Number Secrete data hash

hash hash

Hash64
Hash64

Encrypted data field

Database record in file ENCDATA

Random Number
202 IBM System i Security: Protecting i5/OS Data with Encryption

Figure 11-39 DDS file for database file ENCDATA

To see information and list of the current customers in the database file ENCDATA, we use
the following CL command:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-40 RUNQRY QRY(*NONE)QRYFILE(R7399_API/ENCDATA)

A*
A* QKSFN Qualified Key Store File Name
A* IV Initialization Vector
A* ENC64 Secure Data
A* PBS Pseudorandom Binary Stream
A*
A R ENCDATAR TEXT('Customer Record ')
A*
A FNAME 15A TEXT('First Name ')
A LNAME 15A TEXT('Last Name ')
A*
A ADRES 20A TEXT(' Address ')
A CITY 20A TEXT(' City ')
A COUNTRY 20A TEXT(' Country ')
A STATE 2A TEXT(' States ')
A ZIP 5A TEXT(' ZIP Code ')
A PHONE 5A TEXT(' Phone number ')
A*
A IV64 24A TEXT('IV - Base64 ')
A CCSID(65535)
A* Encrypted data converted to Base64
A*
A ENC64 108A TEXT(' Secure field ')
A* secure data
A* hash
A* - end of encrypted DATA -
A*
A KEYLAB 32A TEXT('Key Label ')
A QKSFN 20A TEXT('Key Store File Name')
A TIME 26A TEXT('yyyy-mm-dd-hh.mm.ss')
A HASH64 28A TEXT('HASH SHA-1 Base64 ')
A*
A K FNAME
A K LNAME
A*

 FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Rumunska 88 Praha
000003 Pavel Kalhous U stare lipy 8 Chrudim
000004 Robin Tatam U nahonu239 Chariton
000005 Eva Mandys Kolodeje 29 Sezemice
Chapter 11. Cryptographic Services APIs method 203

11.4.1 External UDFs functions scenario overview

In our new scenario we want to ensure that the information in the database file ENCDATA
was not inadvertently modified. That means that we want to check whether all the records
written to our database file have been changed. For this purpose, each record has its proper
hash value. This value is used as an integrity check value to identify this record or verify its
integrity.

To illustrate how we can use the Cryptographic Services API for this purpose, we created the
following two external UDF functions:

� HASH_DATA function

The HASH_DATA function checks whether the record in the ENCDATA has the correct
hash. This hash is in the last column (field) in the record of the database file ENCDATA
(Hash64). This field is written in the Base64 format.

http://en.wikipedia.org/wiki/Base64

� DEC_DATA function

The DEC_DATA function checks that the hints in the encrypted data field, ’hash’ of the
encrypted data field, and ’hash’ of the entire record (Hash64) are correct. See
Figure 11-38 on page 202.

For more information about UDFs function, refer to the IBM Redbooks publication, Stored
Procedures, Triggers, and User-Defined Functions on DB2 Universal Database for iSeries,
SG24-6503, at:

http://www.redbooks.ibm.com/abstracts/sg246503.html?Open

11.4.2 HASH_DATA UDF function

The UDF function HASH_DATA checks the hash of the record (Figure 11-41).

Figure 11-41 Structure of the record

Prerequisites and assumptions
To prepare the scenario we must perform the following steps:

1. Create C service program TXT_UDF_HS:

CRTCMOD MODULE(R7399_API/TXT_UDF_HS)
 SRCFILE(R7399_API/QCSRC_SQL)
 TEXT('SQL UFD function to Test Hash of rows ')

CRTSRVPGM SRVPGM(R7399_API/TXT_UDF_HS)
 MODULE(R7399_API/TXT_UDF_HS R7399_API/BASE64_COD)
 EXPORT(*ALL) ACTGRP(*CALLER)

Data Hash64

Structure of the record in the data base file

Length of the record
204 IBM System i Security: Protecting i5/OS Data with Encryption

http://en.wikipedia.org/wiki/Base64
http://www.redbooks.ibm.com/abstracts/sg246503.html?Open

2. Create UDF function HASH_DATA.

Before a UDF function can be recognized and used by the database manager, it should be
created using the CREATE FUNCTION statement (Figure 11-42).

STRSQL

Figure 11-42 Create SQL UDF function HASH_DATA

This function utilizes the Calculate HASH API, which calculates a HASH value for a string.
For further details of this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm

HASH_DATA
To calculate and check the hash of the database record in file ENCDATA, we enter the CL
command STRSQL and then the SQL statement (Figure 11-43).

STRSQL

Figure 11-43 SQL statement to use UDF function HASH_DATA

The external UDF function, HASH_DATA, calculates the hash of the string and compares it
with the expected value.

It requires the following three input parameters:

� The data string that will be hashed:

FNAME || LNAME || ADRES || CITY ||
COUNTRY || STATE || ZIP || PHONE ||

Type SQL statement, press Enter..
> CREATE FUNCTION R7399_API/HASH_DATA(VARCHAR(312), INTEGER,
 VARCHAR(108))
 RETURNS VARCHAR(3)
 LANGUAGE C
 DETERMINISTIC
 specific HASHED0001
 NO SQL
 NO EXTERNAL ACTION
 external name 'R7399_API/TXT_UDF_HS(txt_UDF_hash)'
 parameter style SQL
 Function HASH_DATA was created in R7399_API.

SELECT FNAME, LNAME,
 HASH_DATA(FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA
Chapter 11. Cryptographic Services APIs method 205

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm

IV64 || ENC64 || KEYLAB || QKSFN ||
TIME

� Length of the data string:

char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME)

� Expected hash value (in our scenario the last field of the record (Hash64)):

HASH64

The output parameter tells you whether the hash of the string and the expected hash value
are the same. The value of this output parameter is YES or NO (Figure 11-44 column
RESULT).

Figure 11-44 Result of the SQL statement

The source code for the txt_UDF_hash function is shown in Example 11-37.

Example 11-37 C source code for the txt_UFD_hash function

#include <recio.h> /* Record I/O routines */
 #include <qusec.h> /* Error code structure */
 #include <sqludf.h>
 #include <qc3ctx.h> /* Hdr for Context APIs */

 int to_Base64(char *a, int b, char *c, int d);

 void SQL_API_FN txt_UDF_hash (char * Concatenated_string,
 int * Length_Concatenated_string,
 char * Hash_Base64,

 SQLUDF_CHAR *rtn_Yes_or_No,

 SQLUDF_NULLIND *nms_InputNullIndicator01,
 SQLUDF_NULLIND *nms_OutputNullIndicator01,
 SQLUDF_CHAR sqludf_sqlstate[SQLUDF_SQLSTATE_LEN + 1],
 SQLUDF_CHAR sqludf_fname[SQLUDF_FQNAME_LEN + 1],

SQLUDF_CHAR sqludf_fspecname[SQLUDF_SPECNAME_LEN + 1],
 SQLUDF_CHAR sqludf_msgtext[SQLUDF_MSGTEXT_LEN + 1])
{
 Qus_EC_t errCode; /* Error code structure */

 char data_field[999];
 char hash_string[20];

FNAME LNAME RESULT
Tom Bliss YES
Adela Roubicek YES
Pavel Kalhous YES
Robin Tatam YES
Eva Mandys YES
206 IBM System i Security: Protecting i5/OS Data with Encryption

 char hash_string_Base64[28];
 int Len_data;
 char Algorithm_description[04];
 char Cryptographic_service_provider;

 memset (Algorithm_description, 0, sizeof(Algorithm_description));
 Algorithm_description[3] = Qc3_SHA1;
 Cryptographic_service_provider = Qc3_Any_CSP;

Len_data = *Length_Concatenated_string;
memcpy(data_field, Concatenated_string, Len_data);

memset(&errCode, 0, sizeof(errCode));
errCode.Bytes_Provided = sizeof(errCode);

Qc3CalculateHash (data_field,
 &Len_data,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &Cryptographic_service_provider,
 NULL,
 hash_string,
 &errCode);

 if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return ;
 }

Len_data = to_Base64(hash_string, sizeof(hash_string),
 hash_string_Base64, Len_data);

if (memcmp(Hash_Base64, hash_string_Base64,
 sizeof(hash_string_Base64)) != 0)
 memcpy (rtn_Yes_or_No, "NO ", 3);
 else
 memcpy (rtn_Yes_or_No, "YES", 3);

return;
}

11.4.3 DEC_DATA UDF function

Now we create new UDF function DEC_DATA and add more input parameters to be able to
check the encrypted data field and check the hash of the entire record (Figure 11-38 on
page 202).
Chapter 11. Cryptographic Services APIs method 207

Prerequisites and assumptions
To prepare the scenario we must perform the following steps:

1. Create C service program TXT_UDF_AL:

CRTCMOD MODULE(R7399_API/GET_UDF_AL)
 SRCFILE(R7399_API/QCSRC_SQL)
 TEXT('SQL UFD function to GET encrypted data')
CRTSRVPGM SRVPGM(R7399_API/GET_UDF_AL)
 MODULE(R7399_API/GET_UDF_AL R7399_API/BASE64_COD)
 EXPORT(*ALL) ACTGRP(*CALLER)

2. Create UDF function DEC_DATA.

Before a UDF function can be recognized and used by the database manager, it should be
created using the CREATE FUNCTION statement (Figure 11-45):

STRSQL

Figure 11-45 Create SQL UDF function DEC_DATA

This UDF functions use the following APIs:

� Calculate Hash API: This API calculates a hash value for a string. For further details on
this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm

� Decrypt Data API: This API restores encrypted data to a clear (intelligible) form. For
further details on this API, visit the following link:

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/apis/qc3decdt.htm

CREATE FUNCTION R7399_API/DEC_DATA(VARCHAR(32), VARCHAR(20),
 VARCHAR(28), VARCHAR(108),
 VARCHAR(312), INTEGER,VARCHAR(28))
 RETURNS VARCHAR(14)
 LANGUAGE C
 DETERMINISTIC
 specific DECRYP0003
 NO SQL
 NO EXTERNAL ACTION
 external name 'R7399_API/GET_UDF_AL(get_UDF_All)'
 parameter style SQL
208 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/apis/qc3decdt.htm

11.4.4 Running DEC_DATA command

To calculate and check the hash of the database record in file ENCDATA and calculate and
check the hash of the encrypted data field, we enter the CL command STRSQL and then the
SQL statement (Figure 11-46).

Figure 11-46 SQL statement to use UDF function DEC_DATA

The external UDF function DEC_DATA calculates the hash of the entire record and compares
it with the written hash value (Hash64). It then decrypts the encrypted data field, calculates
the hash, and compares it with the written hash (hash). It requires the following seven input
parameters:

� The key label used for encrypting the secret data in the customer data record:

KEYLAB

� The fully qualified file name of the keystore file containing the keys used for encrypting the
secret data:

QKSFN

� The Initialization vector in the Base64 format:

IV64

� The encrypted data field:

ENC64

� The data that will be hashed:

FNAME || LNAME || ADRES || CITY ||
COUNTRY || STATE || ZIP || PHONE ||
IV64 || ENC64 || KEYLAB || QKSFN ||
TIME

� The length of the data string:

char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME)

select FNAME, LNAME,
 DEC_DATA(KEYLAB, QKSFN, IV64,
 ENC64,
 FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME,
 char_length(FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME),
 HASH64) as RESULT
 from ENCDATA
Chapter 11. Cryptographic Services APIs method 209

� The expected hash value (in our scenario the last field of the record (Hash64)):

HASH64

The output parameter tells you whether the data in the record was modified. If the data in the
record was not changed, we receive as a result the secret data (Figure 11-47).

Figure 11-47 Result of SQL statement of DEC_DATA

For the customer Adela Roubicek we can see as a result >>Error HASH<<. Some part of the
record was changed. For the rest of the customers we can see their secret data.

Example 11-38 Example of C source code GET_UDF_AL UDF function

#include <recio.h> /* Record I/O routines */
#include <qusec.h> /* Error code structure */
#include <sqludf.h>
#include <qc3ctx.h> /* Hdr for Context APIs */

#define len_PRBS 16 /* Pseudorandom Binary Stream */
#define len_Sec 14 /* Length Secret Data 14Byte */
#define len_FNAME 15 /* length of First Name */
#define len_LNAME 15 /* length of Last Name */

int Base64_to(char *a, int b, char *c, int d);

void SQL_API_FN get_UDF_All (char * Key_Label,
 char * Qualified_key_store_file_name,
 char * IV_B64,
 char * Encrypted_64_Data,
 char * Concatenated_string,

int * Length_Concatenated_string,
 char * Hash_Base64,

 SQLUDF_CHAR *rtn_Decrypted_Secret_Data,

 SQLUDF_NULLIND *nms_InputNullIndicator01,
 SQLUDF_NULLIND *nms_OutputNullIndicator01,
 SQLUDF_CHAR sqludf_sqlstate[SQLUDF_SQLSTATE_LEN + 1],
 SQLUDF_CHAR sqludf_fname[SQLUDF_FQNAME_LEN + 1],
 SQLUDF_CHAR sqludf_fspecname[SQLUDF_SPECNAME_LEN + 1],
 SQLUDF_CHAR sqludf_msgtext[SQLUDF_MSGTEXT_LEN + 1])
{

 Qc3_Format_ALGD0200_T algD; /* Block cipher alg description*/
 Qc3_Format_KEYD0400_T kskey; /* Key store key structure */
 Qus_EC_t errCode; /* Error code structure */

 char IV[16];

FNAME LNAME RESULT
Tom Bliss 123123123123
Adela Roubicek >>Error HASH<<
Pavel Kalhous Ahoj Pavle jak
Robin Tatam Hi Robin Tatam
Eva Mandys This This This
210 IBM System i Security: Protecting i5/OS Data with Encryption

 char Data_enc[80];
 char n_Data_enc[80];
 char HASH[20];
 int rtnLen;
 int len_in;
 int len_out;
 int cipherLen;
 int i;

 char data_field[999];
 char hash_string[20];
 char hash_string_Base64[28];
 int Len_data;
 char Algorithm_description[04];

char Cryptographic_service_provider;

/*---*/
/* 1. Calculate hash SHA - 1 for all record */
/*---*/
 Cryptographic_service_provider = Qc3_Any_CSP;
 memset (Algorithm_description, 0, sizeof(Algorithm_description));
 Algorithm_description[3] = Qc3_SHA1;
 Len_data = *Length_Concatenated_string;
 memcpy(data_field, Concatenated_string, Len_data);

 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);

 Qc3CalculateHash ((char*)&data_field,
 &Len_data,

"DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &Cryptographic_service_provider,
 NULL,
 hash_string,
 &errCode);

 if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return ;
 }
 Len_data = to_Base64(hash_string, sizeof(hash_string),
 hash_string_Base64, Len_data);

if (memcmp(Hash_Base64, hash_string_Base64,
 sizeof(hash_string_Base64)) != 0)
 {
 printf (">>Error HASH << \n");
 memset (rtn_Decrypted_Secrete_Data, ' ' ,
 sizeof(rtn_Decrypted_Secrete_Data));
 memcpy (rtn_Decrypted_Secrete_Data, ">>Error HASH<<", len_Sec);
 return;
 }
Chapter 11. Cryptographic Services APIs method 211

/*---*/
/* 1. Convert IV and ENCDATA from Base64 to Binary Stream */
/*---*/
 memset(&algD, 0, sizeof(algD)); /* Init alg description to null*/
 len_in = 24;
 len_out = Base64_to(IV_B64, len_in, algD.Init_Vector, len_out);
 len_in = 108;

len_out = Base64_to(Encrypted_64_Data, len_in,
 Data_enc, len_out);
/*---*/
/* 2. Create Algorithm description for Format Name "ALGD0200" */
/*---*/
 algD.Block_Cipher_Alg = Qc3_AES; /* Set AES algorithm */
 algD.Block_Length = 16; /* Block size is 16 */
 algD.Mode = Qc3_CBC; /* Use cipher block chaining */
 algD.Pad_Option = Qc3_No_Pad; /* Do not pad */

/*---*/
/* 3. Setup Key description for format name "KEYD0400" */
/*---*/
 memset(&kskey, '\0' , sizeof(kskey));
 memcpy(kskey.Key_Store, Qualified_key_store_file_name, 20);
 memcpy(kskey.Record_Label, Key_Label, 32);

cipherLen = len_out;
/*---*/
/* 4. Decrypt the Data */
/*---*/
 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);

 Qc3DecryptData(Data_enc,
 &len_out,
 (char*)&algD,
 Qc3_Alg_Block_Cipher,
 &kskey,
 Qc3_Key_KSLabel,
 &Cryptographic_service_provider,
 NULL,
 Data_enc,

&cipherLen,
 &rtnLen,
 &errCode);

 if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3EncryptData \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 return ;
 }
/*---*/
/* 5. Calculate SHA-1 hash for secure data */
/*---*/
 len_out = 60;
 memset (Algorithm_description, 0, sizeof(Algorithm_description));
 Algorithm_description[3] = Qc3_SHA1;
212 IBM System i Security: Protecting i5/OS Data with Encryption

 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);

 Qc3CalculateHash (Data_enc,
 &len_out,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &Cryptographic_service_provider,
 NULL,
 HASH,
 &errCode);

 if (errCode.Bytes_Available != 0) {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 memset (rtn_Decrypted_Secret_Data, ' ' , len_Sec);
 memcpy (rtn_Decrypted_Secret_Data, ">>Error Qc3h<<", len_Sec);

return;
 }
 if (memcmp(&Data_enc[60], HASH, 20) != 0) {
 printf (">>HASH error secret data \n");
 memset (rtn_Decrypted_Secret_Data, ' ' , len_Sec);
 memcpy (rtn_Decrypted_Secret_Data, ">>Error hash<<", len_Sec);
 return;
 }
 memset (rtn_Decrypted_Secret_Data, ' ' , len_Sec);
 memcpy (rtn_Decrypted_Secret_Data, Data_enc+len_PRBS, len_Sec);
 printf ("SecureData = %.14s\n", rtn_Decrypted_Secret_Data);

 return;
}

11.4.5 Execution example of external UDFs function scenario

This section provides an execution example of our UDF’s function scenario. This might sound
redundant, and it is in a way, but it gives you a more hands-on look and feel of the application
along with actual messages that you might see. Consider this as a summary of an application
description with tagged along messages.

All source code is stored in the library R7399_API in the source physical file QCSRC_SQL.

Before we start this section we assume the library R7399_API is restored, the MK is set up,
and at least one symmetric key is in the keystore file KEYFILET encrypted under this MK.

1. Run Query to see information about generated MKs (Figure 11-48):

RUNQRY QRY(*NONE) QRYFILE(R7399_API/MSTRKVV)

Figure 11-48 List of MK

MSTRNUM KVV TIME
000001 8 pqUBIqLfyThueZ+QmeEGvLI0WU0= 2008-02-26-14.01.18.080000
000002 1 dEOlmzHaOfpNfO7qI/RR/nOimag= 2008-02-26-14.01.29.412000
Chapter 11. Cryptographic Services APIs method 213

2. Run Query to see information about the generated symmetric keys (Figure 11-49):

RUNQRY QRY(*NONE) QRYFILE(R7399_API/INFOFILE)

Figure 11-49 List of generated symmetric keys

3. Add the library R7399_API to the user portion of the library list for the job:

ADDLIBLE LIB(R7399_API)

4. Create C service program txt_UDF_HS:

CRTCMOD MODULE(R7399_API/TXT_UDF_HS)
 SRCFILE(R7399_API/QCSRC_SQL)
 TEXT('SQL UFD function to Test Hash of rows ')

CRTSRVPGM SRVPGM(R7399_API/TXT_UDF_HS)
 MODULE(R7399_API/TXT_UDF_HS R7399_API/BASE64_COD)
 EXPORT(*ALL) ACTGRP(*CALLER)

5. Create UDF function HASH_DATA:

STRSQL

CREATE FUNCTION R7399_API/HASH_DATA(VARCHAR(312), INTEGER,
 VARCHAR(108))
 RETURNS VARCHAR(3)
 LANGUAGE C
 DETERMINISTIC
 specific HASHED0001
 NO SQL
 NO EXTERNAL ACTION
 external name 'R7399_API/TXT_UDF_HS(txt_UDF_hash)'
 parameter style SQL

When we receive message Routine HASH_DATA in R7399_API already exists we can
use the DROP function to remove this definition:

DROP FUNCTION R7399_API/HASH_DATA

6. Create the C service program txt_UDF_AL:

CRTCMOD MODULE(R7399_API/GET_UDF_AL)
 SRCFILE(R7399_API/QCSRC_SQL)
 TEXT('SQL UFD function to GET encrypted data')

CRTSRVPGM SRVPGM(R7399_API/GET_UDF_AL)
 MODULE(R7399_API/GET_UDF_AL R7399_API/BASE64_COD)
 EXPORT(*ALL) ACTGRP(*CALLER)

7. Create the UDF function DEC_DATA:

STRSQL

CREATE FUNCTION R7399_API/DEC_DATA(VARCHAR(32), VARCHAR(20),
 VARCHAR(28), VARCHAR(108),
 VARCHAR(312), INTEGER,VARCHAR(28))

KEYLABEL KEYTYPE KEYSIZE SMK
000001 LABEL_04 AES-CBC 16 8
000002 LABEL_01 AES-CBC 16 8
000003 LABEL_08 AES-CBC 16 8
214 IBM System i Security: Protecting i5/OS Data with Encryption

 RETURNS VARCHAR(14)
 LANGUAGE C
 DETERMINISTIC
 specific DECRYP0003
 NO SQL
 NO EXTERNAL ACTION
 external name 'R7399_API/GET_UDF_AL(get_UDF_All)'
 parameter style SQL

When we receive the message Routine DEC_DATA in R7399_API already exists we can
use the DROP function to remove this definition:

DROP FUNCTION R7399_API/DEC_DATA

8. Create the C service program txt_UDF_DS:

CRTCMOD MODULE(R7399_API/TXT_UDF_DS)
 SRCFILE(R7399_API/QCSRC_SQL)
 TEXT('SQL UFD function to Display Hash of rows ')

CRTSRVPGM SRVPGM(R7399_API/TXT_UDF_DS)
 MODULE(R7399_API/TXT_UDF_DS R7399_API/BASE64_COD)
 EXPORT(*ALL) ACTGRP(*CALLER)

9. Create UDF function HASH_DSP:

STRSQL

CREATE FUNCTION R7399_API/HASH_DSP(VARCHAR(312), INTEGER,
 VARCHAR(108))
 RETURNS VARCHAR(28)
 LANGUAGE C
 DETERMINISTIC
 specific HASHED0002
 NO SQL
 NO EXTERNAL ACTION
 external name 'R7399_API/TXT_UDF_DS(txt_UDF_dsp)'
 parameter style SQL

When we receive the message Routine HASH_DSP in R7399_API already exists we can
use the DROP function to remove this definition:

DROP FUNCTION R7399_API/HASH_DSP

10.Create the physical file ENCDATA if we have not already done so:

CRTPF FILE(R7399_API/ENCDATA) SRCFILE(R7399_API/QDDSSRC)
 SRCMBR(ENCDATA) GENLVL(20) FLAG(0) FILETYPE(*DATA)

11.Write data (including private information) to the database file ENCDATA:

SET_DATA KEYLABEL(LABEL_04)
 KEYFILES(R7399_API/KEYFILES)
 KEYFILET(R7399_API/KEYFILET)
 ENCDATA(R7399_API/ENCDATA)
 INFODATA(R7399_API/INFOFILE)
 FNAME(Tom) LNAME(Bliss)
 ADRES('1232 Maple St.')
 CITY('Oronoko')
 COUNTRY('USA')
 STATE(MN) ZIP(16100)
 PHONE(11111)
Chapter 11. Cryptographic Services APIs method 215

 SSN(123123123123)

SET_DATA KEYLABEL(LABEL_01)
 KEYFILES(R7399_API/KEYFILES)
 KEYFILET(R7399_API/KEYFILET)
 ENCDATA(R7399_API/ENCDATA)
 INFODATA(R7399_API/INFOFILE)
 FNAME(Adela) LNAME(Roubicek)
 ADRES('Rumunska 88')
 CITY(Praha)
 COUNTRY('Czech Republic')
 STATE(CZ)
 ZIP(11022)
 PHONE(26588)
 SSN('Text Text Text')

SET_DATA KEYLABEL(LABEL_08)
 KEYFILES(R7399_API/KEYFILES)
 KEYFILET(R7399_API/KEYFILET)
 ENCDATA(R7399_API/ENCDATA)
 INFODATA(R7399_API/INFOFILE)
 FNAME(Pavel)
 LNAME(Kalhous)
 ADRES('Na ruzku 8')
 CITY(Chrudim)
 COUNTRY('Czech Republic')
 STATE(CZ) ZIP(52692)
 PHONE(12698)
 SSN('Ahoj Pavle jak')

SET_DATA KEYLABEL(LABEL_08)
 KEYFILES(R7399_API/KEYFILES)
 KEYFILET(R7399_API/KEYFILET)
 ENCDATA(R7399_API/ENCDATA)
 INFODATA(R7399_API/INFOFILE)
 FNAME(Robin)
 LNAME(Tatam)
 ADRES('Country Rd 59')
 CITY('Chariton')
 COUNTRY('USA')
 STATE(IO)
 ZIP(12682)
 PHONE(82345)
 SSN('Hi Robin Tatam')

12.Run an SQL statement to use the UDF function HASH_DATA:

SELECT FNAME, LNAME,
 HASH_DATA(FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
216 IBM System i Security: Protecting i5/OS Data with Encryption

 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA

Figure 11-50 SQL statement UDF function HASH_DATA

13.Run the SQL statement to use the UDF function HASH_DSP:

SELECT FNAME, LNAME,
 HASH_DSP (FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA

Figure 11-51 SQL statement UDF function HASH_DATA

14.Run the SQL statement to use the UDF function HASH_DATA:

SELECT FNAME, LNAME,
(KEYLAB, QKSFN, IV64,
 ENC64,
 FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME,
 char_length(FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME),
 HASH64) as RESULT
 from ENCDATA

 FNAME LNAME RESULT
 Tom Bliss YES
 Adela Roubicek YES
 Pavel Kalhous YES
 Robin Tatam YES

FNAME LNAME RESULT
Tom Bliss /ExbvFFjtKGUGMrqKQ3XLID5JfM=
Adela Roubicek eShyUlxfpW8Vcw9QTyViwGn9Pis=
Pavel Kalhous 47au5v5PqnMgnUXy0fusIeZLmW8=
Robin Tatam MqfoS9uM3HsYnNSRUOQDuNpbqvA=
Chapter 11. Cryptographic Services APIs method 217

Figure 11-52 SQL statement UDF function

11.4.6 Using the external trigger function

On the target system, there is another customer database file EMPDATA that includes the
same information as the database file ENCDATA except for the fields needing decryption
(IV64, KEYLAB, QKSFN) and fields TIME and HASH64. The structure of this record looks like
Figure 11-53. The EMPDATA file is shown in Figure 11-54 on page 219.

Figure 11-53 DDS source code for the database file ENCDATA

In our scenario there are some requirements. If some information has changed (for example,
phone number (PHOME field), address (ADRES field)) or some records are deleted from the
EMPDATA file, we must expose these changes in the ENCDATA file, and if the record is not
deleted, the hash of the record should be recalculated. The FNAME and the LNAME are used
as the database key fields, and therefore these two fields are unchangeable.

We created a user-written program trigger, which defines a set of required actions executed
in response to the event of an UPDATE or DELETE operation on the EMPDATA file.

More information about DB2 Triggers we can found at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb
.doc/ad/c0007038.htm

Also refer to the IBM Redbooks publication, Stored Procedures, Triggers, and User-Defined
Functions on DB2 Universal Database for iSeries, SG24-6503, at:

http://www.redbooks.ibm.com/abstracts/sg246503.html?Open

FNAME LNAME RESULT
Tom Bliss 123123123123
Adela Roubicek Text Text Text
Pavel Kalhous Ahoj Pavle jak
Robin Tatam Hi Robin Tatam

FNAME Time Hash64InfoLNAME

Hash64
Hash64

Database record in the file EMPDATA

ADRES CITY COUNTRY STATE PHONEZIP
218 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/ad/c0007038.htm
http://www.redbooks.ibm.com/abstracts/sg246503.html?Open

Figure 11-54 Database file EMPDATA

In our scenario we created external trigger program UPD_TRG_DT for the database file
EMPDATA. This trigger program exposes some changes in the file EMPDATA immediately
into the database file ENCDATAh.

Prerequisites and assumptions
To prepare our scenario we need to create the database file EMPDATA and perform the
following steps:

1. Create the physical file EMPDATA:

CRTPF FILE(R7399_API/EMPDATA) SRCFILE(R7399_API/QDDSSRC)
 SRCMBR(EMPDATA) TEXT('Employee database file')

2. Insert into this database file EMPDATA the same information that we put into the
database file ENCDATA, without the secret data. To insert information we start SQL:

STRSQL

Use SQL statements:

INSERT INTO R7399_API/EMPDATA
 values('Tom',
 'Bliss',
 '1232 Maple St.',
 'Oronoko',
 'USA',
 'MN',
 '16100',
 '11111')

 A*
 A R EMPDATAR TEXT('Employee Record')
 A*
 A FNAME 15A TEXT('First Name ')
 A LNAME 15A TEXT('Last Name ')
 A*
 A ADRES 20A TEXT(' Address ')
 A CITY 20A TEXT(' City ')
 A COUNTRY 20A TEXT(' Country ')
 A STATE 2A TEXT(' States ')
 A ZIP 5A TEXT(' ZIP Code ')
 A PHONE 5A TEXT(' Phone number ')
 A*
 A K FNAME
 A K LNAME
 A*
Chapter 11. Cryptographic Services APIs method 219

3. Run Query to see a list of records put in the database file EMPDATA:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

Figure 11-55 RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

4. Run Query to see a list of records put in the database file ENCDATA:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-56 RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

5. Define an external trigger.

To define an external trigger, we must create an external trigger program and add it to a
table using the Add Physical File Trigger (ADDPFTRG) CL command.

a. Create C program UPD_TRG_DT:

CRTCMOD MODULE(R7399_API/UPD_TRG_DT)
 SRCFILE(R7399_API/QCSRC_SQL)

CRTPGM PGM(R7399_API/UPD_TRG_DT)
 MODULE(R7399_API/UPD_TRG_DT
 R7399_API/BASE64_COD)

b. Add a trigger to a table.

To add a trigger to a table, we must:

• Identify the table:

R7399_API/EMPDATA

• Identify the kind of operation:

TRGTIME(*AFTER) TRGEVENT(*UPDATE), RGTIME(*BEFORE) TRGEVENT(*DELETE)

• Identify the program that performs the desired actions:

PGM(R7399_API/UPD_TRG_DT)

• Provide a unique name for the trigger or let the system generate a unique name:

TRG(UPD_TRG_DT_UPDATE), TRG(UPD_TRG_DT_DELETE)

Create trigger R7399_API/UPD_TRG_DT to update the EMPDATA file:

ADDPFTRG FILE(R7399_API/EMPDATA)
 TRGTIME(*AFTER) TRGEVENT(*UPDATE)
 PGM(R7399_API/UPD_TRG_DT)
 TRG(UPD_TRG_DT_UPDATE)
 TRGLIB(R7399_API)

 FNAME LNAME ADRES CITY
000001 Robin Tatam Country Rd 59 Chariton
000002 Tom Bliss 1232 Maple St. Oronoko
000003 Adela Roubicek Rumunska 88 Praha
000004 Pavel Kalhous Na ruzku 8 Chrudim

FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Rumunska 88 Praha
000003 Pavel Kalhous Na ruzku 8 Chrudim
000004 Robin Tatam Country Rd 59 Chariton
220 IBM System i Security: Protecting i5/OS Data with Encryption

 MLTTHDACN(*RUN) TRGUPDCND(*CHANGE)

Create trigger R7399_API/UPD_TRG_DT to delete from the EMPDATA file:

ADDPFTRG FILE(R7399_API/EMPDATA)
 TRGTIME(*BEFORE) TRGEVENT(*DELETE)
 PGM(R7399_API/UPD_TRG_DT)
 TRG(UPD_TRG_DT_DELETE)
 TRGLIB(R7399_API) MLTTHDACN(*RUN)

6. Now we are ready to walk through our scenario.

For customer Adela Roubicek we want to change a place of residence and for customer
Pavel Kalhous we want to remove his record from the database file EMPDATA. For
customer Adela Roubicek our external trigger program changes the information in
database file ENCDATA and recalculates the hash, and for customer Pavel Kalhous our
external trigger program deletes his record from the ENCDATA file.

To update record Adela Roubickova in the EMPNAME file we use the SQL statement:

STRSQL

UPDATE EMPDATA
 SET CITY = 'Kolodeje 29', ADRES = 'Sezemice'
 WHERE FNAME = 'Adela'

To delete record Pavel Kalhous in the EMPNAME file we use the SQL statement:

DELETE FROM EMPDATA
 WHERE FNAME = 'Pavel' AND LNAME = 'Kalhous'

7. We run Query to see a list of records in the database file ENCDATA and EMPDATA:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-57 RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

Figure 11-58 RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

We use the Calculate Hash API to calculate a hash value of a string. For further details on
this API, visit the following link:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha
.htm

 FNAME LNAME ADRES CITY
 000001 Tom Bliss 1232 Maple St. Oronoko
 000002 Adela Roubicek Sezemice Kolodeje 29
 000003 Robin Tatam Country Rd 59 Chariton

 FNAME LNAME ADRES CITY
000001 Robin Tatam Country Rd 59 Chariton
000002 Tom Bliss 1232 Maple St. Oronoko
000003 Adela Roubicek Sezemice Kolodeje 29
Chapter 11. Cryptographic Services APIs method 221

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/apis/qc3calha.htm

UPD_TRG_DT
This program is called when a delete or an update operation occurs in the EMPDATA file.
This program will delete or update the records from the ENCDATA file based on the FNAME
and the LNAME field that are passed in from the trigger buffer.

� The program checks the application's commit lock level. If it runs under commitment
control, the file is opened with commitment control. Otherwise, the file is opened without
commitment control.

Example 11-39 Checking the application's commit lock level

if(strcmp(hstruct->commit_lock_level,"0") == 0)
 {
 if ((endaPtr = _Ropen("R7399_API/ENCDATA",
 "rr+, riofb=N")) == NULL)
 {
 printf (">>_Ropen ENCDATA \n");
 printf (" Open of ENCDATA file failed errno %d.\n", errno);
 exit(1);
 }
 }
 else
 {
 if ((endaPtr = _Ropen("R7399_API/ENCDATA",
 "rr+,commit=Y")) == NULL)
 {
 printf (">>_Ropen ENCDATA for commit YES \n");
 printf (" Open of ENCDATA file failed errno %d.\n", errno);

exit(1);
 }
 }

� Constructs the database key field from FNAME and LNAME and reads the record from
ENCDATA.

Example 11-40 Construction the database key field

memset (&endain, ' ', sizeof(endain));
 memset (&endakey, ' ', sizeof(endakey));

 memcpy(endakey.FNAME, &oldbuf, sizeof(oldbuf.FNAME) +
 sizeof(oldbuf.LNAME));

 dbendaPtr = _Rreadk(endaPtr, &endain, sizeof(endain), __KEY_EQ,
 &endakey, sizeof(endakey));

 if (endaPtr->riofb.num_bytes == 0)
 {
 printf (">>Rreadk ENCDATA \n");
 printf (" No data %.15s in ENCDATA\n", endaout.FNAME);
 _Rclose(endaPtr);
 exit(1);
 }
222 IBM System i Security: Protecting i5/OS Data with Encryption

� If the record exists in the ENCDATA file and event is DELETE, the record is deleted from
the ENCDATA file and returns control to the database manager (Example 11-41).

Example 11-41 Delete record the ENCDATA file

if ((strncmp(hstruct ->trigger_event,"2",1)== 0)) /* delete event */
 {
 _Rdelete(endaPtr); /* delete record from ENCDATA */
 _Rclose(endaPtr); /* close ENCDATA file */
 return; /* exit */
 }

� If an UPDATE event occurs, the trigger program tests whether the UPDATE statement
wants to change FNAME or LNAME. This two fields are unchangeable (Example 11-42).

Example 11-42 Test for update FBAME and LNAME fields

if (memcmp(&oldbuf,&newbuf, sizeof(newbuf.FNAME) +
 sizeof(newbuf.LNAME)) != 0)
 {
 printf (">>FNAME and LNAME is changing \n");
 exit(1);
 }

� The program constructs a new record and recalculates the hash, converts this hash to
Base64 form, and finally updates the record in the ENCDATA file (Example 11-43).

Example 11-43 Construction of new record and hash calculation

Length_of_input_data = sizeof(endain) -
 sizeof(endain.HASH64);

 Cryptographic_service_provider = Qc3_Any_CSP;
 memset(&Algorithm_description, 0, sizeof(Algorithm_description));
 Algorithm_description[3] = Qc3_SHA1;

 memset(&errCode, 0, sizeof(errCode));
 errCode.Bytes_Provided = sizeof(errCode);

Qc3CalculateHash ((char*)&endain.FNAME,
 &Length_of_input_data,
 "DATA0100",
 (char*)&Algorithm_description,
 "ALGD0500",
 &Cryptographic_service_provider,
 NULL,
 Hash,
 &errCode);

 if (errCode.Bytes_Available != 0)
 {
 printf (">>Qc3CalculateHash \n");
 printf (" errCode.Exception_Id = %.7s\n", errCode.Exception_Id);
 exit(1);
 }
len = to_Base64(Hash, sizeof(Hash), endain.HASH64, len);

Chapter 11. Cryptographic Services APIs method 223

printf ("Base64(SHA1(Hash)) = %.28s\n",endain.HASH64);

if ((_Rupdate(endaPtr, &endain,
 sizeof(endain)))->num_bytes < sizeof(endain))
 {
 printf("Update record from ENCDATA failed errno %d.\n" , errno);
 _Rclose(endaPtr);
 exit(1);
 }
_Rclose(endaPtr);
return;

Execution example of trigger program
This section provides an execution example of our user-written trigger program. This might
sound redundant, and it is in a way, but it gives you a hands-on look and feel of the
application along with actual messages you might see. Consider this as a summary of an
application description with tagged along messages.

The source code for our trigger program is stored in the library R7399_API in the source
physical file QCSRC_SQL.

Before we start this section, we assume that the library R7399_API is restored, and that the
information from the previous section has been inserted into file ENCDATA.

1. Run Query to see the record in the ENCDATA file:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-59 List of customers in ENCDATA file

2. Create the physical file EMPDATA:

CRTPF FILE(R7399_API/EMPDATA) SRCFILE(R7399_API/QDDSSRC)
 SRCMBR(EMPDATA) TEXT('Employee database file')

3. Insert into this database file EMPDATA the same information that we put into the
database file ENCDATA, without the secret data (Figure 11-59).

To insert this information, we start SQL:

STRSQL

Use SQL statements:

INSERT INTO R7399_API/EMPDATA
 values('Tom',
 'Bliss',
 '1232 Maple St.',
 'Oronoko',
 'USA',
 'MN',
 '16100',
 '11111')

 FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Rumunska 88 Praha
000003 Pavel Kalhous Na ruzku 8 Chrudim
000004 Robin Tatam Country Rd 59 Chariton
224 IBM System i Security: Protecting i5/OS Data with Encryption

INSERT INTO R7399_API/EMPDATA
 values('Adela',
 'Roubicek',
 'Rumunska 88',
 'Praha',
 'Czech Republic',
 'CZ',
 '11022',
 '26588')

INSERT INTO R7399_API/EMPDATA
 values('Robin',
 'Tatam',
 'Country Rd 59',
 'Chariton',
 'USA',
 'IO',
 '12682',
 '82345')

INSERT INTO R7399_API/EMPDATA
 values('Pavel',
 'Kalhous',
 'Na ruzku 8',
 'Chrudim',
 'Czech Republic',
 'CZ',
 '52692',
 '12698')

4. Run Query to see the list of records put in the database file EMPDATA:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

Figure 11-60 RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

5. Run Query to see the list of records put in the database file ENCDATA:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-61 RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

 FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Rumunska 88 Praha
000003 Pavel Kalhous Na ruzku 8 Chrudim
000004 Robin Tatam Country Rd 59 Chariton

 FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Rumunska 88 Praha
000003 Robin Tatam Country Rd 59 Chariton
000004 Pavel Kalhous Na ruzku 8 Chrudim
Chapter 11. Cryptographic Services APIs method 225

6. Define an external trigger.

a. Create C program UPD_TRG_DT:

CRTCMOD MODULE(R7399_API/UPD_TRG_DT)
 SRCFILE(R7399_API/QCSRC_SQL)

CRTPGM PGM(R7399_API/UPD_TRG_DT)
 MODULE(R7399_API/UPD_TRG_DT
 R7399_API/BASE64_COD)

b. Add a trigger to a table:

ADDPFTRG FILE(R7399_API/EMPDATA)
 TRGTIME(*AFTER) TRGEVENT(*UPDATE)
 PGM(R7399_API/UPD_TRG_DT)
 TRG(UPD_TRG_DT_UPDATE)
 TRGLIB(R7399_API)
 MLTTHDACN(*RUN) TRGUPDCND(*CHANGE)

ADDPFTRG FILE(R7399_API/EMPDATA)
 TRGTIME(*BEFORE) TRGEVENT(*DELETE)
 PGM(R7399_API/UPD_TRG_DT)
 TRG(UPD_TRG_DT_DELETE)
 TRGLIB(R7399_API) MLTTHDACN(*RUN)

If you receive the message Trigger operation not successful and if the trigger
definition already exists, you have to use the CL command to remove this physical file
trigger:

RMVPFTRG FILE(R7399_API/EMPDATA) TRG(UPD_TRG_DT_UPDATE) TRGLIB(R7399_API)
RMVPFTRG FILE(R7399_API/EMPDATA) TRG(UPD_TRG_DT_DELETE) TRGLIB(R7399_API)

7. Display the hash for record Adela Roubicek:

STRSQL

SELECT FNAME, LNAME,
 HASH_DSP (FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA
 WHERE FNAME = 'Adela'

FNAME LNAME RESULT
Adela Roubicek TN0QG6Vxwt20p5Fe19jc/jNtah0=

8. Update record Adela Roubickova in the EMPDATA file:

STRSQL

UPDATE EMPDATA
226 IBM System i Security: Protecting i5/OS Data with Encryption

 SET CITY = 'Kolodeje 29', ADRES = 'Sezemice'
 WHERE FNAME = 'Adela'

Base64(SHA1(Hash)) = ZhnUm51WLHFp2pI0YU+EFbJKwNA=
Press ENTER to end terminal session.
1 rows updated in EMPDATA in R7399_API.

9. Delete record Pavel Kalhous in the EMPDATA file:

STRSQL

DELETE FROM EMPDATA
 WHERE FNAME = 'Pavel' AND LNAME = 'Kalhous'

1 rows deleted from EMPDATA in R7399_API.

10.Run Query to see a list of records put in the database file EMPDATA again:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

Figure 11-62 RUNQRY QRY(*NONE) QRYFILE(R7399_API/EMPDATA)

11.Run Query to see a list of records put in the database file ENCDATA again:

RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

Figure 11-63 RUNQRY QRY(*NONE) QRYFILE(R7399_API/ENCDATA)

12.Verify the hash for record Adela Roubicek in the ENCDATA file:

STRSQL

SELECT FNAME, LNAME,
 HASH_DATA(FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA
 WHERE FNAME = 'Adela'

FNAME LNAME RESULT
Adela Roubicek YES

000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Sezemice Kolodeje 29
000004 Robin Tatam Country Rd 59 Chariton

 FNAME LNAME ADRES CITY
000001 Tom Bliss 1232 Maple St. Oronoko
000002 Adela Roubicek Sezemice Kolodeje 29
000003 Robin Tatam Country Rd 59 Chariton
Chapter 11. Cryptographic Services APIs method 227

13.Display a new hash for the record Adela Roubicek in the ENCDATA file:

STRSQL

SELECT FNAME, LNAME,
 HASH_DSP (FNAME || LNAME || ADRES || CITY ||
 COUNTRY || STATE || ZIP || PHONE ||
 IV64 || ENC64 || KEYLAB || QKSFN ||
 TIME ,
 char_length(FNAME || LNAME || ADRES || CITY
 ||
 COUNTRY || STATE || ZIP || PHONE
 ||
 IV64 || ENC64 || KEYLAB || QKSFN
 ||
 TIME),
 HASH64) as Result
 from ENCDATA
 WHERE FNAME = 'Adela'

FNAME LNAME RESULT
Adela Roubicek ZhnUm51WLHFp2pI0YU+EFbJKwNA=
228 IBM System i Security: Protecting i5/OS Data with Encryption

Chapter 12. HW-based method

In this chapter, we provide scenarios to demonstrate a way of using the Cryptographic
Coprocessor 4764/4758 hardware with an i5/OS server. The Common Cryptographic
Architecture (CCA) API set is used to interface with the Cryptographic Coprocessor
4764/4758 hardware. We use the cryptocard and CCA APIs to encrypt and decrypt data.

12
© Copyright IBM Corp. 2008. All rights reserved. 229

12.1 Scenario overview

We have two scenarios: scenario A shows the encryption/decryption of data between two
systems and scenario B shows the encryption/decryption of data on the same system.

12.1.1 Scenario A: exchanging secret data between two systems

On the source system we have a file that includes sensitive data. We want to move this data
to the target system over the nonsecure channel or save/restore on media, such as DVD or
tape. The basic structure of the scenario is outlined in Figure 12-1.

Figure 12-1 Encryption/decryption of data on the two systems: from the source to the target system

On the source system we use symmetric encryption to encrypt a sensitive stream file. To
protect data from undetected changes we generate a proof of identity value called a digital
signature. We use symmetric encryption to encrypt this digital signature and current date and
time. Encrypted data and encrypted digital signature are saved into different stream files. We
send/save these two files from the source system to the target system where we receive or
restore them.

On the target system we decrypt both files—a stream file with the data and a stream file with
a digital signature, the date, and the time. We start a signature process on the source system
and a verifying process on the target system to ensure that the data has not been changed
during the transfer.

For an encryption/decryption of data, a digital signature, and date and time, we need to
generate secret symmetric DES keys (double length DATA key). For the distribution of these
generated symmetric DES keys, we generate one pair of asymmetric keys (a private key and
a public key) for encryption on the target system in the keystore file. As shown in the diagram,
the keystore file is named PKASTORET (PKA Key Store File) and they keys are named
TARGET.ENC.01.

Encryption of data on the source system

PKA Key Store File
PKASTORES

Encrypted by Asymmetric Master Key

Stream file

DATA_encrypted

Application
ENcrypt

Using CCA SAPIs

Encrypting
data

Signature
of the data

Signing data
Encrypting Signing data

 Encrypting Date and Time

Decryption of data on the target system

PKA Key Store File
PKASTORET

Encrypted by Asymmetric Master Key

Stream file

DATA_encrypted

Application
DEcrypt

Using CCA SAPIs

Decrypting
data

Signature
of the data

Decrypting Date and Time
 Verifying Signing data

move

move

TARGET.ENC.01 publ Exchange public keys SOURCE.SIG. 01 publ

Keys
SOURCE.SIG. 01 priv
SOURCE.SIG. 01 publ

TARGET.ENC.01 publ

Keys
TARGET.ENC.01 priv
TARGET.ENC.01 publ

SOURCE.SIG. 01 publ

Date and time Date and time

Date and Time Date and Time

2007-08-17-06.20.59.6930
230 IBM System i Security: Protecting i5/OS Data with Encryption

For the digital signature/verification process we generate one pair of asymmetric keys for the
signing, SOURCE.SIG.01, on the source system in the keystore file PKASTORES.

Finally, we need to exchange the public keys of the asymmetric pairs between the target and
the source system. The public key for signing, SOURCE.SIG.01, from the keystore file
PKASTORES on the source system is sent to the keystore file PKASTORET on the target
system. The public key for encryption TARGET.ENC.01 from the keystore file PKASTORET
on the target system is sent to the keystore file PKASTORES on the source system.

In some cases we want to send sensitive data from the opposite side, from the target system
to the source system. The basic structure of the scenario is outlined in Figure 12-2. This
scenario is logically the same as the previous four paragraphs except that target and source
are switched.

Figure 12-2 Encryption/decryption data on a different system (from the target to the source system)

This is conceptually the same scenario as the case described in Figure 12-1 on page 230
except that target and source are switched.

Decryption of data on the Source system

PKA Key Store File
PKASTORES

Encrypted by Asymmetric Master Key

Stream file

DATA_encrypted

Application
Decrypt

Using CCA SAPIs

Decrypting
data

Signature
of the data

Decrypting Date and Time
 Verifying Signing data

Encryption of data on the Target system

PKA Key Store File
PKASTORET

Encrypted by Asymmetric Master Key

Stream file

DATA_encrypted

Application
ENcrypt

Using CCA SAPIs

Encrypting
data

Signature
of the data

Signing data
Encrypting Signing data

 Encrypting Date and Time

TARGET.SIG.01 publ Exchange public keys SOURCE.ENC. 01 publ

Keys
SOURCE.ENC. 01 priv
SOURCE.ENC. 01 publ

TARGET.SIG.01 publ

Keys
TARGET.SIG.01 priv
TARGET.SIG.01 publ

SOURCE.ENC. 01 publ

Date and time Date and time

Date and Time
Date and Time

2007-08-17-06.20.59.6930
Chapter 12. HW-based method 231

12.1.2 Scenario B: encryption/decryption of data on the same system

We use this scenario if we want to encrypt/decrypt data on the same system or if we have
only one system with Cryptographic Coprocessor 4758/4764 as an encryption/decryption
engine (accelerator). The scenario scheme is outlined in Figure 12-3.

Figure 12-3 Encryption/decryption data on the same system

On the system we use symmetric encryption to encrypt sensitive stream file. To protect data
from undetected changes we generate a proof of identity value called a digital signature. We
use symmetric encryption to encrypt the digital signature with the date and the time when the
file was encrypted (current date and time). Encrypted data and the encrypted digital signature
with the date and the time are saved in different stream files.

On the same system we decrypt both files, a stream file with the encrypted data and a stream
file with an encrypted digital signature and the date and the time. And, finally, we start
verifying and signature process to ensure that the data has not been changed.

For an encryption/decryption data/digital signature we need the date and the time to generate
symmetric DES key. For the protection of the generated secret symmetric DES keys we
generate one pair of asymmetric keys (public, private), TARGET.ENC.01, for an encryption
process in the keystore file PKASTORES. For the digital signature/verification process we
generate one pair of asymmetric keys (public, private), SOURCE.SIG.01, in the keystore file
PKASTORES.

Encryption/Deryption data on the same system

PKA Key Store File
PKASTORES

Keys
SOURCE.SIG. 01 priv
SOURCE.SIG. 01 publ
SOURCE.ENC.01 priv
SOURCE.ENC.01 publ

Encrypted by Asymmetric Master Key

Stream file

DATA_encrypted

Application
ENcrypt

Using CCA SAPIs

Encrypting
data

Signature of the
data

Signing data
Encrypting Signing data

 Encrypting Date and Time

Stream file

Application
DEcrypt

Using CCA SAPIs

Decrypting
data

Decrypting Date and Time
 Verifying Signing data

2007-08-17-06.20.59.6930

Date and time

Date and Time Date and Time
232 IBM System i Security: Protecting i5/OS Data with Encryption

12.2 Prerequisites and assumptions

It is important that we ensure that our source and target systems meet the requirements
necessary for the Cryptographic Coprocessor prior to installing it. These requirements include
hardware and software prerequisites.

We need to ensure the secure access of our source and target server resources prior to
installing a Cryptographic Coprocessor.

Let us familiarize ourselves with the object authorities that are required for the security APIs
(SAPI) used in our scenario:

� Cryptographic_Resource_Allocate (CSUACRA)
� Cryptographic_Resource_Deallocate (CSUACRD)
� Logon_Control (CSUALCT)
� Keystore_Initialize (CSNBKSI)
� Key_Storage_Designate (CSUAKSD)
� PKA_Key_Record_Create (CSNDKRC)
� PKA_Key_Generate (CSNDPKG)
� PKA_Public_Key_Extract (CSNDPKX)
� PKA_Key_Record_Create (CSNDKRC)
� Digital_Signature_Generate (CSNDDSG)
� One_Way_Hash (CSNDDSG)
� PKA_Key_Record_Read (CSNDKRR)
� PKA_Symmetric_Key_Generate (CSNDSYG)
� Encipher (CSNBENC)
� PKA_Symmetric_Key_Import (CSNDSYI)
� Digital_Signature_Verify (CSNDDSV)
� Decipher (CSNBDEC)

To prepare the scenario we must perform the following steps:

1. The source and the target system have a 4764/4758 Cryptographic Coprocessor installed
and configured properly.

2. Install the 4764/4758 Cryptocard hardware and follow the instructions of the
Cryptographic Coprocessor Configuration Wizard.

3. Create roles and profiles in the 4758/4764 Cryptographic Coprocessor to allow us to
access APIs (SAPI) used in our scenario.

4. We assume that the Cryptographic Coprocessor card with the profile is already identified
either by defaulting to the CRP01 device or by being explicitly named using the call
program CRPALLOC. Also, this device must be varied on, and we must be authorized to
use this device description.

Note: You can find a description of these APIs (SAPI) in the manual IBM PCI
Cryptographic Coprocessor, CCA Basic Services Reference and Guide, Release 2.52,
IBM iSeries PCICC Feature, which can be found at the following link:

http://www-306.ibm.com/security/cryptocards/pdfs/IBM_4758_Basic_Services_Release
_2_52.pdf

Appendix A of the manual describes the return codes and the reason codes that a verb
uses to report the results of processing.
Chapter 12. HW-based method 233

http://www-306.ibm.com/security/cryptocards/pdfs/IBM_4758_Basic_Services_Release_2_52.pdf

5. Every Cryptographic Coprocessor must have a role called the default role. Any user that
has not logged on to the Cryptographic Coprocessor will operate with the capabilities
defined in the default role. Users who only need the capabilities defined in the default role
do not need a profile. In most applications, the majority of the users will operate under the
default role, and will not have user profiles. Typically, only security officers and other
special users need profiles.

In our scenarios, we need an API that uses an access control point that is not enabled in
the default role. That is why we log on with a profile that uses a role having the access
control point for particular APIs.

12.3 Scenario environment setup

To build the scenario environment:

1. Go to this Redbooks publication’s Web site for download. The following are in the
downloaded package:

– R7399_CCA.savf
– text01.txt
– text02.txt

2. Restore library R7399_CCA.

3. Compile the CL program CRTPGM:

CRTCLPGM PGM(R7399_CCA/CRTPGM)
 SRCFILE(R7399_CCA/QCLSRC)
 SRCMBR(CRTPGM)
 TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

4. To create all programs for our scenarios, run the program CRTPGM:

CALL PGM(R7399_CCA/CRTPGM)

Note: Cryptographic Coprocessors on systems running the i5/OS operating system use
role-based access control. In a role-based system, you define a set of roles that
correspond to the classes of coprocessor users. You can enroll each user by defining
an associated user profile to map the user to one of the available roles.

The capabilities of a role are dependent on the access control points or cryptographic
hardware commands that are enabled for that role. You can then use your
Cryptographic Coprocessor to create profiles that are based on the role that you
choose.

As you design your application, consider the commands that you must enable or restrict
in the access-control system and the implications to your security policy.

Note: There is a performance impact when we log on to the Cryptocard. Key
management functions should be enabled for a role other than the default role. The
default role should be enabled for encrypt/decrypt or sign/verify. In this way you can log
off the card and then still do the encrypt/decrypt or sign/verify without the performance
impact.

Note: When we restore library R7399_CCA, all programs needed for our scenarios are
restored in this library.
234 IBM System i Security: Protecting i5/OS Data with Encryption

5. Create a directory in the source system where <user profile> is MilanK:

MKDIR DIR('/home/<user profile>')
MKDIR DIR('/home/<user profile>/Files')

Create a directory in the target system where <user profile> is CZ50257:

MKDIR DIR('/home/<user profile>')
MKDIR DIR('/home/<user profile>/Files')

6. Restore files that we want to encrypt to the directory /home/<user profile>/Files. In our
scenarios we restore the files text01.txt and text02.txt.

12.4 Exchanging secret data between two systems (scenario A)

In this section we provide a step-by-step guide to encrypt and decrypt secret data between
two systems. Refer to the scenario outlined in Figure 12-1 on page 230 and Figure 12-2 on
page 231.

Process summary
This section highlights the tasks to be performed in this scenario:

� Source system setup and keys generation
� Transferring files with public keys from source to target system
� Target system setup and keys generation
� Transferring files with public keys from target to source system
� Adding public keys from target onto source system’s keystore file
� Encrypting data
� Transferring encrypted files to target system
� Logging off and deallocating on source system
� Decrypting data
� Logging off and deallocating on target system

12.4.1 Two systems scenario: step-by-step guide

This section provides detailed information for each step to be taken on the source system,
summarized in the previous section.

Source system setup and keys generation
To set this up:

1. Add the library R7399_CCA to the user portion of the library list for the our job:

ADDLIBLE LIB(R7399_CCA)

2. Allocate the Cryptographic Coprocessor device description to our job:

CALL PGM(CRPALLOC) PARM(CRP02)

This program uses the Cryptographic_Resource_Allocate (CSUACRA) API verb to
explicitly allocate a cryptographic device to our job so that the system can determine how
to route all subsequent cryptographic requests.

If we use any of the CCA API verbs without first explicitly using the
Cryptographic_Resource_Allocate (CSUACRA) API verb, the system will attempt to
allocate the default cryptographic device. The default device is the cryptographic device
named CRP01. It must be created by either using the Basic Configuration wizard or the
Create Device Crypto (CRTDEVCRP) CL command.
Chapter 12. HW-based method 235

We only need to use CSUACRA when we wish to use a device other than the default
cryptographic device. A device allocated to a job, either explicitly or implicitly, remains
allocated until either the job ends or the device is deallocated using the
Cryptographic_Resource_Deallocate (CSUACRD) API verb.

3. Log on into the Cryptographic Coprocessor.

We can log on by using the program LOGON that uses the Logon_Control (CSUALCT)
API verb. To start this program we enter the command:

CALL PGM(LOGON) PARM('user ID' 'passphrase')

Where 'user ID' is a string that identifies the user to the system and 'passphrase' is data
used in the authentication process.

We need to log on only if we wish to use APIs that use access control points that are not
enabled in the default role. Log on with a profile that uses a role that has the access
control points we want to use enabled.

4. Generate two pairs asymmetric keys pairs and store both pairs to the keystore file. Extract
the public keys from this keystore file, store them to the stream files, and send the files to
the target system.

Note: The program CRPALLOC is included also in manual System i Networking
Cryptographic hardware Version 5 Release 4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Note: The program LOGON is included also in manual System i Networking
Cryptographic Hardware Version 5 Release 4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pd
236 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pd

These steps appear in Figure 12-4. We created the program PKAKEYGEN.

Figure 12-4 Generation of the asymmetrical key pairs on the source system

Run the following command:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'SOURCE.ENC.01'
 'SOURCE.SIG.01'
 'PKASTORES R7399_CCA '
 '*YES'
 '/home/MilanK/Source.enc.01.pub'
 '/home/MilanK/Source.sig.01.pub')

The parameters and their values used in this program execution are:

– *YES: A keystore file, R7399_CCA/PKASTORES, is to be initialized.

– SOURCE.ENC.01: key label of asymmetric key pair for encryption.

– SOURCE.SIG.01: key label of asymmetric key pair for signing.

– PKASTORES R7399_CCA: a fully qualified file name of the keystore file.

– *YES: This is to extract public keys and store them to the stream files.

– /home/MilanK/Source.enc.01.pub: A stream file where an extracted public key for
encryption is to be stored.

– /home/MilanK/Source.sig.01.pub: A stream file where an extracted public key for
signature verification is to be stored.

PKA key generation on the source system
PKA signing key

pair
Public Private

PKA enc/dec
key pair

Private

PKA Key Store File
PKASTORES

Private PublicSOURCE.SIG.01

Signing keys

Enc/Dec keys

 CSUAKSD Key_Storage_Designate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

Signing
Key pairs

Enc/Dec
Key pairs

Public

/home/MilanK/Source.enc.01.pub

PublicSOURCE.SIG.01

CSNDPKX PKA_Public_Key_Extract

CSNDPKX PKA_Public_Key_Extract

Signing
Public key

Enc/Dec
Public key

/home/MilanK/Source.sig.01.pub

SOURCE.ENC.01 Public

CSNBKSI Key_Storage_Initialization

PKA Key Store File
PKASTORES

PublicPrivateSOURCE.ENC.01

Encrypted by Asymmetric Master Key
Chapter 12. HW-based method 237

The program PKAKEYGEN creates two pairs of asymmetric keys as two records in a
keystore file, PKASTORES (Example 12-1).

Example 12-1 DSPPFM of keystore file PKASTORES.

Display Physical File Member
 File : PKASTORES Library : R7399_CCA
 Member : QAC6PKEY Record : 1
 Control Column : 1
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 SOURCE ENC 01
 SOURCE SIG 01
 ****** END OF DATA ******

Description of PKAKEYGEN program
In this section we provide a description of the PKAKEYGEN program.

� Initialization of a keystore file

If the first parameter is *YES or keystore file R7399_CCA/PKASTORES does not exist, a
keystore file R7399_CCA/PKASTORES is initialized.

If the keystore file already exists and this first parameter is *NO, generated key pairs will
be stored in the existing keystore file.

If the keystore file R7399_CCA/PKASTORES already exists and the first parameter is
*YES, a keystore file R7399_CCA/PKASTORES is initialized again and all keys in this
keystore file are deleted.

To create a keystore file, the Key_Storage_Initialization verb CSNBKSI is used. The
Key_Storage_Initialization verb initializes a key-storage file using the current asymmetric
master-key.

� Designation of the key-storage file

Before we can perform any operation using the keystore file R7399_CCA/PKASTORES or
keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD.

� Generation of one asymmetric key pair for encrypting and storing this key pair to the
keystore file

We generate one asymmetrical key pair for encryption in three steps:

a. The first step we use is the PKA_Key_Record_Create CSNDKRC verb. This service
adds a key record with a null key-token to the keystore file (PKA key-storage). The new
key-record is identified by the key label SOURCE.ENC.01 and is specified as the
second parameter in our program.

b. In the second step we build a key token, needed to generate the PKA key for
encryption. The RSA Key-Token Header Token identifier X'1E' specifies an external
token. The optional private-key is either in cleartext or enciphered by a transport
key-encrypting key. Section identifier X'02' specifies RSA private key, 1024-Bit
modulus-exponent form. The key usage flag bits X'80' indicate that signature
generation and key decryption are allowed. Section identifier X'04' specifies the RSA

Note: Enter this command to verify that two key pairs are created.\:

QSYS/DSPPFM FILE(R7399_CCA/PKASTORES) MBR(QAC6PKEY)
238 IBM System i Security: Protecting i5/OS Data with Encryption

public key with the Public-key exponent field length in bytes 3, Public-key modulus
length in 1024 bits, and Public-key exponent 65537.

c. In the third step we use the PKA_Key_Generate verb (CSNDPKG) to generate a
public-private encryption key-pair for use with the RSA algorithm. The generated
private-key is returned in the form enciphered by the CCA asymmetric master-key.

The generated asymmetric key pair for encryption with the key label identification
SOURCE.ENC.01 is stored to the keystore file PKASTORES.

� Extracting the public encrypting key from the keystore file and storing this public key to the
stream file

We extract the public key with key label identification SOURCE.ENC.01 from the keystore
file PKASTORES, and we store this key to the stream file Source.enc.01.pub. To extract
this public key we use PKA_Public_Key_Extract verb CSNDPKX.

The first 64 bytes of the stream file structure contain the label of the key
SOURCE.ENC.01. The next parameter of stream file structure is an integer variable that
contains the number of bytes of data in the key_token variable value. The last parameter
of the stream file structure is the key token that will be written to the keystore file (PKA
key-storage) on the target system (SAPI PKA_Key_Record_Create verbs CSNDKRC in
program STRPUBKEY). The structure of this stream file is shown in Example 12-2.

Example 12-2 Stream structure of the file containing key token (public key)

typedef _Packed struct target_entryStr {
 char label_key[64];
 long target_key_token_length;
 char target_key_token[2500];
 } target_entryStr;

� Generation of one asymmetric signing key pair and storing this key pair to the keystore file
in the same way as an asymmetric key pair for encryption

We generate one pair asymmetric signing key pair in three steps:

a. The first step we use is the PKA_Key_Record_Create CSNDKRC verb. This service
adds a key record with a null key-token to keystore file (PKA key-storage). The new
key-record is identified by the key label SOURCE.SIG.01 and is specified as the third
parameter in our program.

b. In the second step we build a key token, needed to generate PKA key encryption.

c. In the third step we use the PKA_Key_Generate verb (CSNDPKG) to generate a
public-private signing key-pair for use with the RSA algorithm. The generated
private-key is returned in the form enciphered by the CCA asymmetric master-key.

The generated asymmetric key pair for signing with the key label identification
SOURCE.SIG.01 is stored to the keystore file PKASTORES.

� Extracting the public encrypting key from the keystore file and storing public key to the
stream file

We extract the public signing key with key label identification SOURCE.SIG.01 from the
keystore file PKASTORES and we store this public key to the stream file
Source.sig.01.pub. To extract this public key we use the PKA_Public_Key_Extract verb.

The first 64 bytes of the stream file structure contain the label of the key SOURCE.SIG.01.
The next parameter of the stream file structure is an integer variable containing the
number of bytes of data in the key_token variable value. The last parameter of the stream
file structure is a pointer to a string variable containing the key token that will be written to
PKA key-storage on the target system. The structure of this stream file is shown in
Example 12-2.
Chapter 12. HW-based method 239

This is the end of PKAKEYGEN program description.

Transferring files with public keys from source to target system
Now we transfer two stream files holding public keys to the target system.

For a security reason in our lab’s environment, we were not able to establish direct
connection between the source and the target system. Therefore, we used a PC to transfer
data between the source and the target system (Figure 12-5).

Figure 12-5 Transfer data from the source to the target system

To transfer stream files Source.enc.01.pub and Source.sig.01.pub from the source system
RCH55 to our PC and from the PC to the target system Brs2as we used FTP commands
(Example 12-3).

Example 12-3 FTP commands to transfer stream files from the source to the target

C:\>ftp rch55
Connected to RCH55.
220-QTCP at RCHAS55.RCHLAND.IBM.COM.
220 Connection will close if idle more than 5 minutes.
User (RCH55:(none)): milank
331 Enter password.
Password:
230 MILANK logged on.
ftp> bin
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> get /home/MilanK/Source.enc.01.pub
200 PORT subcommand request successful.
150 Retrieving file /home/MilanK/Source.enc.01.pub
226 File transfer completed successfully.
ftp: 2568 bytes received in 0,06Seconds 41,42Kbytes/sec.
ftp> get /home/MilanK/Source.sig.01.pub
200 PORT subcommand request successful.
150 Retrieving file /home/MilanK/Source.sig.01.pub
226 File transfer completed successfully.
ftp: 2568 bytes received in 0,00Seconds 2568000,00Kbytes/sec.

Transfer stream files

from source to target system

our PC

Brs2asRCH55

FTPFTP

TargetSource
/home/MilanK /home/CZ50257

 Source.enc.01.pub
 Source.sig.01.pub

iSeries iSeries
240 IBM System i Security: Protecting i5/OS Data with Encryption

ftp>close
ftp> open brs2as
Connected to brs2as.praha.cz.ibm.com.
220-QTCP at BRS2AS.
220 Connection will close if idle more than 5 minutes.
User (brs2as.praha.cz.ibm.com:(none)): cz50257
331 Enter password.
Password:
230 CZ50257 logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> cd /home/CZ50257
250 "/home/CZ50257" is current directory.
ftp> put Source.enc.01.pub
200 PORT subcommand request successful.
150 Sending file to /home/CZ50257/Source.enc.01.pub
250 File transfer completed successfully.
ftp: 2568 bytes sent in 0,00Seconds 2568000,00Kbytes/sec.
ftp> put Source.sig.01.pub
200 PORT subcommand request successful.
150 Sending file to /home/CZ50257/Source.sig.01.pub
250 File transfer completed successfully.
ftp: 2568 bytes sent in 0,00Seconds 2568000,00Kbytes/sec.
ftp> close
221 QUIT subcommand received.

Target system setup and keys generation
Now, we move to the target system for initial setup and keys generation:

1. Add the library R7399_CCA to the user portion of the library list for the our job:

ADDLIBLE LIB(R7399_CCA)

2. Allocate a Cryptographic Coprocessor device description to our job.

To Allocate a Cryptographic Coprocessor device description to our job, we need enter the
command:

CALL PGM(CRPALLOC) PARM(CRP03)

This program uses the Cryptographic_Resource_Allocate (CSUACRA) API verb to
explicitly allocate a cryptographic device to our job so that the system can determine how
to route all subsequent cryptographic requests.

If we use any of the CCA API verbs without first explicitly using the
Cryptographic_Resource_Allocate (CSUACRA) API verb, the system will attempt to
allocate the default cryptographic device. The default device is the cryptographic device
named CRP01. It must be created by either using the Basic Configuration wizard or the
Create Device Crypto (CRTDEVCRP) CL command.

We only need to use CSUACRA when we wish to use a device other than the default
cryptographic device. A device allocated to a job, either explicitly or implicitly, remains
allocated until either the job ends or the device is deallocated using the
Cryptographic_Resource_Deallocate (CSUACRD) API verb.
Chapter 12. HW-based method 241

3. Log on into the Cryptographic Coprocessor.

We can log on by using the program LOGON that uses the Logon_Control (CSUALCT)
API verb. To start this program we enter the command.

CALL PGM(LOGON) PARM('user ID' 'passphrase')

Where 'user ID' is string that identifies the user to the system and 'passphrase' is data
used in the authentication process.

We need to log on only if we wish to use an API that uses access control points that are
not enabled in the default role. Log on with a profile that uses a role that has the access
control point that we want to use enabled.

4. Generate two asymmetric key pairs and store both pairs’ keys (private,public) to the
keystore file and extract the public keys from this keystore file. Store them to the stream
files and send them to the source system.

These steps appear are shown in Figure 12-6. For this purpose we write the program
PKAKEYGEN. This is the same program that we use on the source system.

Figure 12-6 Generation of the asymmetrical key pairs on the target system

Note: The program CRPALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Note: The program LOGON is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pd

PKA key generation on the target system

PKA Key Store File
PKASTORET

TARGET.SIG.01 Private

PKA signing key
pair

Private

PKA enc/dec
key pair

Private

Signing keys

Enc/Dec keys

 CSUAKSD Key_Storage_Designate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

Public

Public

Public

Signing
Key pairs

Enc/Dec
Key pairs

CSNDPKX PKA_Public_Key_Extract

CSNDPKX PKA_Public_Key_ExtractEnc/Dec Extract
Public key

Signing Extract
Public key

/home/CZ50257/Target.sig.01.pub

TARGET.SIG.01 Public

/home/CZ50257/Target.enc.01.pub

TARGET.ENC.01 Public

PKA Key Store File
PKASTORET

PrivatePublicTARGET.ENC.01

Encrypted by Asymmetric Master Key

CSNBKSI Key_Storage_Initialization
242 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pd

Run the following command:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'TARGET.ENC.01'
 'TARGET.SIG.01'
 'PKASTORET R7399_CCA '
 '*YES'
 '/home/CZ50257/Target.enc.01.pub'
 '/home/CZ50257/Target.sig.01.pub')

The parameters and their values used in this program execution are:

– *YES: A keystore file, R7399_CCA/PKASTORET, is to be initialized.

– TARGET.ENC.01: Key label of asymmetric key pair for encryption.

– TARGET.SIG.01: Key label of asymmetric key pair for signing.

– PKASTORET R7399_CCA: A fully qualified file name of the keystore file.

– *YES: This is to extract public keys and store them to the stream files.

– /home/CZ50257/Target.enc.01.pub: A stream file where extracted public key for
encryption is to be stored.

– /home/CZ50257/Target.sig.01.pub: A stream file where extracted public key for signing
is to be stored.

The program PKAKEYGEN creates in keystore file (PKA key-store file) PKASTORET two
records, two key pairs of asymmetric keys (Example 12-4).

Example 12-4 DSPPFM of keystore file PKASTOREST

Display Physical File Member
File : PKASTORET Library : R7399_CCA
Member : QAC6PKEY Record : 1
Control Column : 1
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
TARGET ENC 01
TARGET SIG 01
 ****** END OF DATA ******

Description of PKAKEYGEN program
The PKAKEYGEN program is as follows:

� Initialization of a keystore file.

If the first parameter is *YES or keystore file R7399_CCA/PKASTORET does not exist,
keystore file R7399_CCA/PKASTORET is initialized.

If the keystore file R7399_CCA/PKASTORET already exists and the first parameter is
*YES, new keystore file R7399_CCA/PKASTORET is initialized again and all keys into
this keystore file are deleted.

If the keystore file already exists and this parameter is *NO, generated key pairs will be
stored in existing keystore file.

To create a keystore file we use the Key_Storage_Initialization verb CSNBKSI. The
Key_Storage_Initialization verb initializes a key-storage file using the current asymmetric
master-key.
Chapter 12. HW-based method 243

� Designate the key-storage file.

For the job that ran our program, before we can perform any operation using the keystore
file R7399_CCA/PKASTORET or keys stored in this keystore file, we must name the
keystore file by the SAPI the Key_Storage_Designate CSUAKSD.

� Generate one pair asymmetric key pair for encrypting and store this key pair to the
keystore file.

We generate one asymmetric encryption key pair in three steps:

a. The first step we use is the PKA_Key_Record_Create CSNDKRC verb. This service
adds a key record with a null key-token to PKA key-storage. The new key-record is
identified by the key label TARGET.ENC.01specified as a second parameter of our
program.

b. In the second step we build a key token, needed to generate PKA key encryption. The
RSA Key-Token Header Token identifier X'1E' specifies external token. The optional
private-key is either in cleartext or enciphered by a transport key-encrypting key.
Section identifier X'02' specifies the RSA private key, 1024-Bit modulus-exponent form.
The key usage flag bits X'80' indicates that signature generation and key decryption is
allowed. Section identifier X'04' specifies the RSA public key with the Public-key
exponent field length in bytes 3, Public-key modulus length in 1024 bits, and Public-key
exponent 65537.

c. In the third step we use the PKA_Key_Generate verb (CSNDPKG) to generate a
public-private encryption key-pair for use with the RSA algorithm. The generated
private-key is returned in the form enciphered by the CCA asymmetric master-key.

The generated asymmetric encrypting pair key with the key label identification
TARGET.ENC.01 is stored to the keystore file PKASTORET.

� Extract the public encrypting key from the keystore file and store public key to the stream
file.

We extract the public encrypting key with key label identification TARGET.ENC.01 from
the keystore file PKASTORET and we store this public key to the Stream file
Target.enc.01.pub. Structure of this stream file is seen in Example 12-2 on page 239. To
extract this public key we use PKA_Public_Key_Extract verb CSNDPKX.

� Generate one asymmetric key pair for signing and store this key pair to the keystore file in
the same way as an asymmetric encryption key pair.

We generate one pair asymmetric signing key pair in three steps.

a. The first step we use is PKA_Key_Record_Create CSNDKRC verb. This service adds
a key record with a null key-token to PKA key-storage. The new key-record is identified
by the key label TARGET.SIG.01 specified as a third parameter of our program.

b. In the second step we build a key token, needed to generate PKA key encryption.

c. In the third step we use PKA_Key_Generate verb (CSNDPKG) to generate a
public-private signing key-pair for use with the RSA algorithm. The generated
private-key is returned in the form enciphered by the CCA asymmetric master-key.

The generated asymmetric signing pair key with the key label identification
TARGET.SIG.01 is stored in the keystore file PKASTORET.

� Extract the public encrypting key from the keystore file and store the public key to the
stream file.

We extract the public signing key with key label identification TARGET.SIG.01 from the
keystore file PKASTORET and we store this public key to the stream file
Target.sig.01.pub. The structure of this stream file is shown in Example 12-2 on page 239.
To extract this public key we use the PKA_Public_Key_Extract verb.
244 IBM System i Security: Protecting i5/OS Data with Encryption

This is the end of PKAKEYGEN program description.

Transferring files with public keys from target to source system
Now we transfer two stream files holding public keys to the source system.

For security reasons, in our environment we are not able to established a direct connection
between the target and the source system, so we have to transfer data between the target
and the source system over the our PC (Figure 12-7).

Figure 12-7 Transfer data from the target to the source system

To transfer stream files Target.enc.01.pub and Target.sig.01.pub from the target system
Brs2as to our PC and from the PC to the source system RCH55 we use FTP commands
(Example 12-5.)

Example 12-5 stream files from the target to the source

C:\>ftp Brs2as
Connected to Brs2as.praha.cz.ibm.com.
220-QTCP at BRS2AS.
220 Connection will close if idle more than 5 minutes.
User (Brs2as.praha.cz.ibm.com:(none)): cz50257
331 Enter password.
Password:
230 CZ50257 logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> get /home/CZ50257/Target.enc.01.pub
200 PORT subcommand request successful.
150 Retrieving file /home/CZ50257/Target.enc.01.pub
250 File transfer completed successfully.
ftp: 2568 bytes received in 0,02Seconds 160,50Kbytes/sec.
ftp> get /home/CZ50257/Target.sig.01.pub
200 PORT subcommand request successful.
150 Retrieving file /home/CZ50257/Target.sig.01.pub
250 File transfer completed successfully.

Transfer stream files

from target to source system

our PC

Brs2asRCH55

FTPFTP

Target
Source

/home/MilanK
 Target.enc.01.pub
 Target.sig.01.pub

/home/CZ50257

iSeries iSeries
Chapter 12. HW-based method 245

ftp: 2568 bytes received in 0,02Seconds 160,50Kbytes/sec.
ftp> close
ftp> open RCH55
Connected to RCH55.
220-QTCP at RCHAS55.RCHLAND.IBM.COM.
220 Connection will close if idle more than 5 minutes.
User (RCH55:(none)): milank
331 Enter password.
Password:
230 MILANK logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> cd /home/MilanK
250 "/home/MilanK" is current directory.
ftp> put Target.enc.01.pub
200 PORT subcommand request successful.
150 Sending file to /home/MilanK/Target.enc.01.pub
226 File transfer completed successfully.
ftp: 2568 bytes sent in 0,00Seconds 2568000,00Kbytes/sec.
ftp> put Target.sig.01.pub
200 PORT subcommand request successful.
150 Sending file to /home/MilanK/Target.sig.01.pub
226 File transfer completed successfully.
ftp: 2568 bytes sent in 0,00Seconds 2568000,00Kbytes/sec.
ftp> close
221 QUIT subcommand received.
ftp> quit

Adding public keys from target onto source system’s keystore file
Now we add public keys from the transferred stream files from the target system to the
keystore file. Transferred files Target.enc.01.pub and Target.sig.01.pub, including the public
encryption and signing key, were add in the keystore file PKASTORES (Figure 12-8).

Figure 12-8 Add public keys to the keystore file on the source system

PKA key generation on the source system
add the public keys to the key store file on the source system

PKA Key Store File
PKASTORES

Private PublicSOURCE.SIG.01

PublicPrivateSOURCE.ENC.01

/home/MilanK/Target.sig.01.pub

TARGET.SIG.01 Public

/home/MilanK/Target.enc.01.pub

TARGET.ENC.01 Public

CSNDKRC PKA_Key_Record_Creat

CSNDKRC PKA_Key_Record_Creat

TARGET.SIG.01 Public

TARGET.ENC.01 Public

Add a key record PKA
key-token.

Add a key record PKA
key-token.

Encrypted by Asymmetric Master Key

 CSUAKSD Key_Storage_Designate
246 IBM System i Security: Protecting i5/OS Data with Encryption

Run the following command:

CALL PGM(STRPUBKEY)
 PARM('PKASTORES R7399_CCA '
 '/home/MilanK/Target.enc.01.pub'
 '/home/MilanK/Target.sig.01.pub')

The parameters and their values used in this program execution are:

� PKASTORES R7399_CCA: a fully qualified file name of the keystore file

� /home/MilanK/Target.enc.01.pub: stream file that holds an extracted public key for
encrypting

� /home/MilanK/Target.sig.01.pub: stream file that holds an extracted public key for signing

The program STRPUBKEY adds two records—two public keys transferred from the target
system (Example 12-6). Now the keystore file PKASTORES contains all needed keys for
encrypting the data.

Example 12-6 QSYS/DSPPFM FILE(R7399_CCA/PKASTORES) MBR(QAC6PKEY)

Display Physical File Member
 File : PKASTORES Library : R7399_CCA
 Member : QAC6PKEY Record : 1
 Control Column : 1
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...
 SOURCE ENC 01
 SOURCE SIG 01
 TARGET ENC 01
 TARGET SIG 01
 ****** END OF DATA ******

Description of STRPUBKEY program
For the STRPUBKEY program:

� Designate the key-storage file.

For the job that ran our program before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file name R7399_CCA/PKASTORES
is specified as the first parameter of the program STRPUBKEY. In the next two steps we
store the transferred public keys for encryption/signing in this keystore file.

� Add the public encryption key to the keystore file name.

We retrieve information from the stream file Target.enc.01.pub specified as the second
parameter of the program STRPUBKEY and use SAPI PKA_Key_Record_Create
CSNDKRC to store the public encryption key to the keystore file PKASTORES. The
structure of the file Target.enc.01.pub is shown in Example 12-2 on page 239.

� Add the public signing key to the keystore file name.

We retrieve information from the stream file Target.sig.01.pub specified as the third
parameter of the program STRPUBKEY and use SAPI PKA_Key_Record_Create
CSNDKRC to store the public signing key to the keystore file PKASTORES. The structure
of the file Target.sig.01.pub is shown in Example 12-2 on page 239.

This is the end of STRPUBKEY program description.
Chapter 12. HW-based method 247

Encrypting data
Now we encrypt data on the source system. In our scenario we encrypt the stream text file.
As a result of our encryption process we have two new files. The first file holds the encrypted
text file and it has the suffix <enc>. The second file holds the encrypted digital signature of the
text file and the current date and time. It has the suffix <sig>.

For encryption of the text file and digital signing and the current date and the time we use
generated random double length DATA key. This DATA key is sent together with the
encrypted text file and the digital signature, date, and time. This DATA key is in an encrypt
form and it is encrypted by asymmetric public key for encryption. The structures of these files
are shown in Figure 12-11 on page 251 and Figure 12-13 on page 253.

Run the following command.

CALL PGM(ENCDATA)
 PARM('/home/MilanK/Files/text01.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'TARGET.ENC.01')

The parameters and their values used in this program execution are:

� /home/MilanK/Files/text01.txt: text file to be encrypted

� /home/MilanK/Files/text01.sig: encrypted digital signature of the text file and the current
date and time

� /home/MilanK/Files/text01.enc: encrypted text file

� PKASTORES R7399_CCA: a fully qualified file name of the keystore file

� SOURCE.SIG.01: key label of the private key for signing of the digest of the text file

� TARGET.ENC.01: key label of the public key for encryption DATA keys

Description of ENCDATA program
For the ENCDATA program:

� Designate the key-storage file.

For the job that ran our program, before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file name R7399_CCA/PKASTORES
is specified as the fourth parameter of the program ENCDATA.
248 IBM System i Security: Protecting i5/OS Data with Encryption

� Retrieve the current date and time and generate the digital signature of the data that will
be encrypted.

We can protect data from undetected modification by including a proof-of-data-integrity
value. This proof-of-data-integrity value is called a digital signature, and relies on hashing
and public-key cryptography.

Figure 12-9 Signing process on the source system

The signing process is realized in two steps (Figure 12-9). Hash the text file
/home/MilanK/Files/text01.txt. In our scenario we do not expect the length of the text file to
be less than 64 bytes. The text file is specified as the first parameter of the program
ENCDATA. We calculate a hash value (digest) from a text file string using the MD5
method by using the SAPI the One_Way_Hash CSNBOWH.

� For an encryption result of the hash we use our private signing key with key label
SOURCE.SIG.01. This label is specified as the fifth parameter of the program ENCDATA.
As a digital-signature-hash formatting method we use PKCS-1.1.

The SAPI CSNDDSG Digital_Signature_Generate verb is used to generate a digital
signature. The encrypted hash value (digest) is called a digital signature.

Note: The parameter describes the length of the hashing text on i5/OS systems for
SAPI One_Way_Hash CSNBOW, and it is restricted to a maximum of
64 MB—64 bytes.

Note: If in SAPI CSNBOWH rule_array FIRST or MIDDLE calls are made, the text size
must be a multiple of the algorithm block size (64 bytes).

PKA Key Store File
PKASTORES

Private PublicSOURCE.SIG.01

Encryption on the source system
Signing process

PKA private sig key

CSNDDSG Digital_Signature_Generate

CSNBOWH One_Way_Hash

16 byte Hash (MD5)

char signature_field
signed by Private

CSUAKSD Key_Store_Designate
PKA Key Store File

PKASTORES

Plain text data

D
A

TA
_l

en
gt

h

read

read

/home/MilanK/Files/text01.txt

This file will be encrypted Encrypted by Asymmetric Master Key
Chapter 12. HW-based method 249

� Encrypt the digital signature by the generated random DATA key.

Encrypting the digital signature is realized in two steps:

a. Generate a random double-length DATA key for the encryption of the digital signature,
the current date, and the time, and simultaneously encipher it by the public encryption
key TARGET.ENC.01 (Figure 12-10).

Figure 12-10 Generate a sign DATA key for the encryption of the digital signature and encipher it by
the public encryption key

We use the SAPI CSNDKRR PKA_Key_Record_Read verb to copy a key token from
keystore file (PKA key-storage) PKASTORES to application storage. This key token is
identified by key label TARGET.ENC.01 and presents the target public encryption key.
This key token is used as an input parameter for encryption of a DATA key in the next
sub-step (SAPI PKA_Symmetric_Key_Generate verb CSNDSYG). The label of the
public encryption key is the sixth parameter of the program ENCDATA.

Next we use the SAPI CSNDSYG PKA_Symmetric_Key_Generate verb to generate a
DATA key and to encipher it. This DATA key is enciphered under an RSA public-key.
The key token of this RSA public-key was obtained in a previous sub-step and has the
associated private key on the target system. This SAPI CSNDSYG returns two
important parameters:

RSA_enciphered_key_token
local_enciphered_key_identifier

The first one containing the DATA key RSA-enciphered is used for decryption on the
target system. The second one is used for the encryption on the source system in the
next step. Both parameters must be sent to the target system.

b. Encipher the digital signature, the date, and the time by the DATA key
(local_enciphered_key_identifier). The CSNBENC Encipher verb uses the DES
algorithm and a secret generated by the DATA key to encipher data.

PKA Key Store File
PKASTORES

TARGET.ENC.01

CSNDKRR PKA_Key_Record_Read

Encryption on the source system
sign DATA key generation

CSNDSYG PKA_Symmetric_Key_Generate

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array
key_encrypting_key_identifier Input String 64 bytes (space)
RSA_public_key_identifier_length Input Integer
RSA_public_key_identifier Input String
local_enciphered_key_identifier_length In/Output Integer
local_enciphered_key_identifier In/Output String
RSA_enciphered_key_token_length In/Output Integer
RSA_enciphered_key_token In/Output String

Public

copies a key token from PKA key-storage to
application storage

PKA public
 enc key
(input)

Public

sign DATA key for Target
systém encrypted by

(output)

sign DATA key for
Source systém (output)

Public

PKA public
 enc key

Encrypted by Asymmetric Master Key
250 IBM System i Security: Protecting i5/OS Data with Encryption

Enciphered digital signing with its length, enciphered date, and the time of when text
file was enciphered and information about the DATA key are stored in the stream file
/home/MilanK/Files/text01.sig. The structure of this file is shown in Figure 12-11. The
name of this file is specified as a second parameter of the program ENCDATA.

Figure 12-11 Encryption of signing by DES key

The structure information the DATA key and the length of the digital signature are the
first part of the stream file /home/MilanK/Files/text01.sig and are shown in
Example 12-7. The encrypted digital signature, the date, and the time are stored
behind this information.

Example 12-7 The structure of text01.sig and text01.enc file

typedef _Packed struct file_Struc {
 long RSA_enciphered_key_token_length;
 char RSA_enciphered_key_token[2504];
 long local_enciphered_key_identifier_length;
 char local_enciphered_key_identifier[64];
 long field_length;
 } file_Struc;

The parameter RSA_enciphered_key_token describes a random DATA key
enciphered under an RSA public-key TARGET.ENC.01. The parameter

Note: Must we encipher the digital signature? No. But in some cases we want to
send secret data and we do not mix in the encrypted text file (for example, the date
and the time). We can add this data together with the digital signature and encipher
it with the generated double length DATA key. In our scenario we add the time and
the date of when the text file was encrypted (2007-08-17-09.33.32.6930).

Encryption on the source system
encryption of the signing by the DATA key

CSNBENC Encipher

long RSA_enciphered_key_token_length
char RSA_enciphered_key_token
local_enciphered_key_identifier_length
local_enciphered_key_identifier
int signature_field_length

char signature_field[signature_field_length]

/home/MilanK/Files/
text01.sig

si
gn

at
ur

e_
fie

ld
_l

en
gt

h

char signature_field
signed by Private

Encipher by
(DATA key)

char time 2007-08-17-06.20.59.6930

2007-08-17-06.20.59.6930
Chapter 12. HW-based method 251

local_enciphered_key_identifier is used on the target system as information containing
a control vector that conforms to the requirements of the key that is imported.

Both parameters are used on the target system in SAPI CSNDSYI
PKA_Symmetric_Key_Import for recovering a DATA key.

The field_length parameter identifies the length of the encrypted digital signature. The
length of the date and the time is known (24 bytes).

� Encrypt the data by the generated random DATA key.

Encrypting the data is done in two steps:

a. Generate a new random double length DATA key for the encryption of the data and
simultaneously encipher it with the public encryption key TARGET.ENC.01. The two
sub-steps are shown in Figure 12-12. These sub-steps are the same as the sub-steps
for the digital signature. The only difference is the value of the random DATA key.

Figure 12-12 Generate a random double length DATA key for the encryption of the data and encipher
it with the public encryption key

PKA Key Store File
PKASTORES

TARGET.ENC.01

CSNDKRR PKA_Key_Record_Read

Encryption on the source system
data DATA key generation

CSNDSYG PKA_Symmetric_Key_Generate

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array
key_encrypting_key_identifier Input String 64 bytes (space)
RSA_public_key_identifier_length Input Integer
RSA_public_key_identifier Input String
local_enciphered_key_identifier_length In/Output Integer
local_enciphered_key_identifier In/Output String
RSA_enciphered_key_token_length In/Output Integer
RSA_enciphered_key_token In/Output String

Public

copies a key token from PKA key-storage to
application storage

PKA public
 enc key
(input)

Public

data DATA key for Target
systém encrypted by

(output)

data DATA key for
Source systém

(output)

Public

PKA public
 enc key

Encrypted by Asymmetric Master Key
252 IBM System i Security: Protecting i5/OS Data with Encryption

b. Encipher the data with the generated random DATA key. We store all information in
the stream file /home/MilanK/Files/text01.enc. The name of this file is specified as the
third parameter of the program ENCDATA. Encrypting the data is shown in
Figure 12-13.

Figure 12-13 Encryption of data by DES key

This is the end of ENCDATA program description.

Transferring encrypted files to target system
Now we transfer both stream files, text01.sig and text01.enc, to the target system.

For security reasons, in our environment we are not able to establish a direct connection
between the source and the target system, so we have to transfer data between the source
and the target system over our PC (Figure 12-5 on page 240).

To transfer stream files text01.sig and text01.enc from the source system RCH55 to our PC
and from the PC to the target system Brs2as we use FTP commands (Example 12-8).

Example 12-8 FTP commands to transfer stram encrypted files from the source to the target

C:\>ftp RCH55
Connected to RCH55.
220-QTCP at RCHAS55.RCHLAND.IBM.COM.
220 Connection will close if idle more than 5 minutes.

Note: The parameter length on SAPI Encipher CSNBENC is restricted to a
maximum of 64 MB (64 bytes) (for i5/OS systems).

Note: For ciphering method CBC, the data length must be a multiple of eight bytes.

Encryption on the source system
encryption of the data by the DATA key

long RSA_enciphered_key_token_length
char RSA_enciphered_key_token
local_enciphered_key_identifier_length
local_enciphered_key_identifier
int DATA_length

Char DATA_encrypted

/home/MilanK/Files/
text01.enc

D
AT

A
_l

en
gt

h

Clear text data

D
AT

A_
le

ng
th

CSNBENC Encipher

Encipher by
(DATA key)
Chapter 12. HW-based method 253

User (RCH55:(none)): milank
331 Enter password.
Password:
230 MILANK logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> get /home/MilanK/Files/text01.sig
200 PORT subcommand request successful.
150 Retrieving file /home/MilanK/Files/text01.sig
226 File transfer completed successfully.
ftp: 2641 bytes received in 0,03Seconds 85,19Kbytes/sec.
ftp> get /home/MilanK/Files/text01.enc
200 PORT subcommand request successful.
150 Retrieving file /home/MilanK/Files/text01.enc
226 File transfer completed successfully.
ftp: 2761 bytes received in 0,00Seconds 2761000,00Kbytes/sec.
ftp> close
221 QUIT subcommand received.
ftp> open brs2as
Connected to brs2as.praha.cz.ibm.com.
220-QTCP at BRS2AS.
220 Connection will close if idle more than 5 minutes.
User (brs2as.praha.cz.ibm.com:(none)): cz50257
331 Enter password.
Password:
230 CZ50257 logged on.
ftp> bin
200 Representation type is binary IMAGE.
ftp> quote site namefmt 1
250 Now using naming format "1".
ftp> lcd D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC
Local directory now D:\RESIDENCY_2007_04_21\Finale_version\savf\CZ50257_CC.
ftp> cd /home/CZ50257/Files
250 "/home/CZ50257/Files" is current directory.
ftp> put text01.sig
200 PORT subcommand request successful.
150 Sending file to /home/CZ50257/Files/text01.sig
250 File transfer completed successfully.
ftp: 2641 bytes sent in 0,00Seconds 2641000,00Kbytes/sec.
ftp> put text01.enc
200 PORT subcommand request successful.
150 Sending file to /home/CZ50257/Files/text01.enc
250 File transfer completed successfully.
ftp: 2761 bytes sent in 0,00Seconds 2761000,00Kbytes/sec.
ftp> close
221 QUIT subcommand received.
ftp> quit
254 IBM System i Security: Protecting i5/OS Data with Encryption

Logging off and deallocating on source system
To do this:

1. Log off from our Cryptographic Coprocessor.

When we have finished with our Cryptographic Coprocessor, log off of it. We can log off by
using the program LOGOFF that uses the Logon_Control (CSUALCT) API verb. To start
this program enter the command:

CALL PGM(LOGOFF)

2. Deallocate a Cryptographic Coprocessor device description from our job.

When we have finished using a Cryptographic Coprocessor, deallocate the Cryptographic
Coprocessor by using the Cryptographic_Resource_Deallocate (CSUACRD) API verb. A
cryptographic device description cannot be varied off until all jobs using the device have
deallocated it.

To deallocate a Cryptographic Coprocessor device description to our job, enter the
command:

CALL PGM(CRPDEALLOC) PARM(CRP02)

Adding public keys from source onto target system’s keystore file
Now back to our target system. We add public keys from the transferred stream files from the
source system to the keystore file. Transferred files Source.enc.01.pub and
Source.sig.01.pub, including the public encryption and signing key, are added to the keystore
file PKASTORET. The scheme is outlined in Figure 12-14.

Figure 12-14 Add public keys to the keystore file on the target system

Note: The program LOGOFF is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Note: The program CRPDEALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

 PKA key generation on the target system
 add the public keys to the key store file on the target system

PKA Key Store File
PKASTORET

TARGET.SIG.01 Private

Private

Public

PublicTARGET.ENC.01

/home/CZ50257/Source.enc.01.pub

PublicSOURCE.SIG.01

/home/CZ50257/Source.sig.01.pub

SOURCE.ENC.01 Public

CSNDKRC PKA_Key_Record_Creat

PublicSOURCE.SIG.01

SOURCE.ENC.01 Public

CSNDKRC PKA_Key_Record_Creat

Add a key record PKA
key-token.

Add a key record PKA
key-token.

Encrypted by Asymmetric Master Key
 CSUAKSD Key_Storage_Designate
Chapter 12. HW-based method 255

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Run the following command:

CALL PGM(STRPUBKEY)
 PARM('PKASTORET R7399_CCA '
 '/home/CZ50257/Source.enc.01.pub'
 '/home/CZ50257/Source.sig.01.pub')

The parameters and their values used in this program execution are:

� PKASTORET R7399_CCA - the fully qualified file name of the keystore file name
� /home/CZ50257/Source.enc.01.pub - extracted public key for encrypting
� /home/CZ50257/Source.sig.01.pub - extracted public key for signing

The program STRPUBKEY adds two records—two public keys transferred from the source
system (Example 12-9).

Example 12-9 QSYS/DSPPFM FILE(R7399_CCA/PKASTORET) MBR(QAC6PKEY)

Display Physical File Member
File : PKASTORET Library : R7399_CCA
Member : QAC6PKEY Record : 1
Control Column : 1
Find
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
TARGET ENC 01
TARGET SIG 01
SOURCE ENC 01
SOURCE SIG 01
 ****** END OF DATA ******

Description of STRPUBKEY program
For the STRPUBKEY program:

� Designate the key-storage file.

For the job that ran our program, before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file name R7399_CCA/PKASTORET
is specified as the first parameter to the program STRPUBKEY. In the next two steps we
store the transferred public encryption/signing keys to this keystore file.

� Add the public encryption key to the keystore file name.

We retrieve information from the stream file Source.enc.01.pub specified as the second
parameter of the program STRPUBKEY and use SAPI PKA_Key_Record_Create
CSNDKRC to store the public encryption key to the keystore file PKASTORET. The
structure of the file Source.enc.01.pub is shown in Example 12-2 on page 239.

� Add the public signing key to the keystore file name.

We retrieve information from the stream file Source.sig.01.pub specified as the third
parameter of the program STRPUBKEY and use SAPI PKA_Key_Record_Create
CSNDKRC to store the public signing key to the keystore file PKASTORET. The structure
of the file Source.sig.01.pub is shown in Example 12-2 on page 239.

This is the end of STRPUBKEY program description.

Decrypting data
Finally, we decrypt the data. We decrypt two stream files, which were the results of our
encryption process. The first file holds an encrypted text file with the suffix <enc>. The second
256 IBM System i Security: Protecting i5/OS Data with Encryption

file holds an encrypted digital signature of the text file, the date, and the time with the suffix
<sig>.

Run the following command:

CALL PGM(DECDATA)
 PARM('/home/CZ50257/Files/text01_dec.txt'
 '/home/CZ50257/Files/text01.sig'
 '/home/CZ50257/Files/text01.enc'
 'PKASTORET R7399_CCA '
 'SOURCE.SIG.01'
 'TARGET.ENC.01')

The parameters and their values used in this program execution are:

� /home/CZ50257/Files/text01_dec.txt: decrypted text file

� /home/CZ50257/Files/text01.sig: encrypted digital signature of the text file, the date, and
the time

� /home/CZ50257/Files/text01.enc: encrypted text file

� PKASTORET R7399_CCA: a fully qualified file name of the keystore file

� SOURCE.SIG.01: key label of the public key to verify digital signature

� TARGET.ENC.01: key label of the private key for encryption the DATA keys

Description of DECDATA program
For the DECDATA program:

� Designate the key-storage file.

For the job that ran our program, before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file name R7399_CCA/PKASTORET
is specified as the fourth parameter of the program ENCDATA. In the next steps we use
keys stored in this keystore file.
Chapter 12. HW-based method 257

� Decrypt the digital signature, the date, and the time.

The decryption process has two steps:

a. Extract a random DATAkey for decryption of the encrypted digital signature, the date,
and the time in the file /home/CZ50257/Files/text01.sig. The name of this file is
specified as a second parameter of the program ENCDATA. The scheme is outlined in
Figure 12-15.

Figure 12-15 Extract the DATA key

The SAPI CSNDSYI PKA_Symmetric_Key_Import verb deciphers the RSA-enciphered
symmetric-key to be imported by using an RSA private-key, then multiply-enciphers
the DATA key using the master key. The RSA private-key is identified by key label
TARGET.ENC.01 and is specified as a sixth parameter of the program DECDATA. The
multiply-enciphered DATA is used in SAPI CSNBDEC Decipher.

Decryption on the target system
extract the DATA key

CSNDSYI PKA_Sym m etric_Key_Im port

CSUAKSD Key_Store_Designate

long RSA_enciphered_key_token_length
char RSA_enciphered_key_token
local_enciphered_key_identifier_length
local_enciphered_key_identifier
in t signature_field_length

char signature_field[signature_field_length]

/hom e/CZ50257/Files/
text01.sig

si
gn

at
ur

e_
fie

ld
_l

en
gt

h

the
DATA

key

PKA Key Store F ile
PKASTORET

Pr ivateP ubl icTARGET.ENC.01

Pr ivate

Encrypted by Asym m etric M aster Key

char tim e 2007-08-17-06.20.59.6930

PKA Key Store F ile
PKASTORET
258 IBM System i Security: Protecting i5/OS Data with Encryption

b. Decipher the encrypted digital signature, the date, and the time with the imported DES
symmetric-key. The Decipher verb uses the Data Encryption Standard (DES) algorithm
and a cipher the DATA key obtained in previous step to decipher the digital signature,
the date, and the time (Figure 12-16).

Figure 12-16 Decrypt signature by the DATA key

� Decrypt the data.

Decrypting the data has two steps:

a. Extract a random DES key for decryption of the data in the file
/home/CZ50257/Files/text01.enc. The name of this file is specified as a third parameter
of the program ENCDATA. The scheme is outlined in Figure 12-17.

Figure 12-17 Extract data DATA key

The SAPI CSNDSYI PKA_Symmetric_Key_Import verb deciphers the RSA-enciphered
symmetric-key to be imported by using an RSA private-key, then multiply-enciphers

Decryption on the target system
decrypt signature by the DATA key

CSNBDEC Decipher

char signature_field[signature_field_length]

si
gn

at
ur

e_
fie

ld
_l

e
ng

th

the
DATA

key

char signature_field
signed by Private

PKA Key Store File
PKASTORET

PublicSOURCE.sig.01

Public – Private
Key pair

Encrypted by Asymmetric Master Key

char time 2007-08-17-06.20.59.6930

2007-08-17-06.20.59.6930

Decryption on the target system
extract data DATA key

CSNDSYI PKA_Sym m etric_Key_Im port

the
DATA

key

long RSA_enciphered_key_token_length
char RSA_enciphered_key_token
local_enciphered_key_identifier_length
local_enciphered_key_identifier
int DATA_length

Char DATA_encrypted

/hom e/CZ50257/F iles/
text01.enc

D
AT

A
_l

en
gt

h

PKA Key Store File
PKASTORET

Pr ivateP ubl icTARGET.ENC.01

Private

Encrypted by Asym m etric M aster Key
Chapter 12. HW-based method 259

the data DATA key using the master key. The RSA private-key is identified by key label
TARGET.ENC.01 and is specified as a sixth parameter of the program DECDATA. The
multiply-enciphered DATA key is used in SAPI CSNBDEC Decipher.

b. Decipher the data with the imported DATA key. The Decipher verb uses the Data
Encryption Standard algorithm and a cipher DES key obtained in the previous step to
decipher data (ciphertext). This verb results in data called plaintext. The name of this
plaintext file is specified as a first parameter of the program DECDATA
(/home/CZ50257/Files/text01_dec.txt).

We use the random DATA key obtained in the previous sub-step to decrypt the data.
The scheme is outlined in Figure 12-18. The encrypted data are in the stream file
/home/CZ50257/Files/text01.enc. The name of this file is specified as a third parameter
of the program ENCDATA.

Figure 12-18 Decrypt data by the DATA key

� Verification process.

On the target system we have access to a public signing key SOURCE.SIG.01, and
therefore we can verify the process as follows:

a. Hash the data using the same hashing algorithm that we used to create the digital
signature.

b. Decrypt the digital signature using a public signing key (SOURCE.SIG.01).

c. Compare the decrypted results to the hash value obtained from hashing the data.

An equal comparison confirms that the data that they possess is the same as that
which we signed. The (CSNDDSG) Digital_Signature_Generate and the (CSNDDSV)
Digital_Signature_Verity verbs perform the hash encrypting and decrypting operations.

Decryption on the target system
decrypt data by the DATA key

Char DATA_encrypted
 (ciphertext)

D
AT

A_
le

ng
th

The
DATA
key

CSNBDEC Decipher

Clear text data

D
A

TA
_l

en
gt

h

/home/MilanK/Files/text01_dec.txt

 Decrypted file (plaintext)write
260 IBM System i Security: Protecting i5/OS Data with Encryption

At the end of this decryption we start the verification process to verify the digital
signature. The scheme is outlined in Figure 12-19. The result of this verification
process tell us whether the decrypted text file in the previous step
/home/CZ50257/Files/text01_dec.txt is the same as that which we signed.

The RSA public-key is identified by key label SOURCE.SIG.01 and is specified as a
fifth parameter of the program DECDATA.

Figure 12-19 Verification process

This is the end of DECDATA program description.

Logging off and deallocating on target system
To do this:

1. Log off from our Cryptographic Coprocessor.

When we have finished with our Cryptographic Coprocessor, log off of it. We can log off by
using the program LOGOFF that uses the Logon_Control (CSUALCT) API verb. To start
this program we enter the command:

CALL PGM(LOGOFF)

2. Deallocate a Cryptographic Coprocessor device description from our job.

When we have finished using a Cryptographic Coprocessor, we should deallocate the
Cryptographic Coprocessor by using the Cryptographic_Resource_Deallocate
(CSUACRD) API verb. A cryptographic device description cannot be varied off until all
jobs using the device have deallocated it.

To deallocate a Cryptographic Coprocessor device description to our job, enter the
command:

CALL PGM(CRPDEALLOC) PARM(CRP03)

Note: The program CRPDEALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Decryption on the target system
Verification process

CSNDDSV Verify a digital signature

CSNBOWH One_Way_Hash

16 byte Hash (MD5)

char signature_field
signed by Private

Plain text data

D
AT

A
_l

en
gt

h
read

PKA Key Store File
PKASTORET

PublicSOURCE.sig.01

PKA public sig key

Return
= 0

digital signature is not
validated

digital signature is
validated

yesno

Encrypted by Asymmetric Master Key
Chapter 12. HW-based method 261

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

12.4.2 Execution example of scenario A

This section provides an execution example of scenario A. This might sound redundant, and
it is in a way, but it gives you a more hands-on look and feel of the application along with
actual messages that you might see. Consider this a summary application description with
tagged along messages.

Environment setup
To set up the environment:

1. Restore library R7399_CCA from the downloaded save file to the source and to the
source system.

2. Compile the CL program CRTPGM on the source and on the target system:

CRTCLPGM PGM(R7399_CCA/CRTPGM)
 SRCFILE(R7399_CCA/QCLSRC)
 SRCMBR(CRTPGM)
 TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

3. To create all programs for our scenario A, start the program CRTPGM on the source and
on the target system:

CALL PGM(R7399_CCA/CRTPGM)

4. Create a directory in the source system, where <user profile> is MilanK. In the target
system <user profile> is CZ50257.

MKDIR DIR('/home/<user profile>')
MKDIR DIR('/home/<user profilr>/Files')

5. Restore files that we want to encrypt to the directory /home/<user profile>/Files. In our
scenarios we restore the files text01.txt and text02.txt.

On the source system RCH55 we encrypt the data text.01 and move encrypted data to the
target system Brs2as where the data will be decrypted. On the Cryptocard coprocessor
CRP02 on the source system and on the Cryptocard coprocessor CRP03 on the target
system, we created profile ALL with roles all in which we enabled all roles that have the
access control point that we want to use.

6. On the source system we perform the following steps:

a. Specify the library R7399_CCA to be added to the user portion of the library list for our
job:

ADDLIBLE LIB(R7399_CCA)

b. Allocate the Cryptographic Coprocessor device description to our job:

CALL PGM(CRPALLOC) PARM(CRP02)
Request was successful
Press ENTER to end terminal session.

Note: The program CRPDEALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Note: When we restore library R7399_CCA, all programs needed for our scenario are
in this library.
262 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

c. Log onto our Cryptographic Coprocessor:

CALL PGM(LOGON) PARM('ALL' 'all')
Logon was successful
Press ENTER to end terminal session.

d. Generate two asymmetrical key pairs and store both pairs keys (private,public) to the
keystore file and extract the public keys from this keystore file. Store them to the
stream files:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'SOURCE.ENC.01'
 'SOURCE.SIG.01'
 'PKASTORES R7399_CCA '
 '*YES'
 '/home/MilanK/Source.enc.01.pub'
 '/home/MilanK/Source.sig.01.pub')

>>> PKAKEYGEN <<<
Key store file R7399_CCA/PKASTORES created

Key store designated
SAPI returned 0/0

ENC Record added to key store
SAPI returned 0/0

ENC Key token built
ENC Key generated and stored in key store
SAPI returned 0/0

ENC Public Key extracted from key store
SAPI returned 0/0

ENC Public Key extracted was written to file

SIG Record added to key store
SAPI returned 0/0

SIG Key token built
SIG Key generated and stored in key store
SAPI returned 0/0

SIG Public Key extracted from key store
SAPI returned 0/0

SIG Public Key extracted was written to file
Press ENTER to end terminal session.

e. Transfer two stream files with the public key to the target system (see Example 12-3 on
page 240):

/home/MilanK/Source.enc.01.pub
/home/MilanK/Source.sig.01.pub
Chapter 12. HW-based method 263

7. On the target system we have to perform the following steps:

a. Specify the library R7399_CCA to be added to the user portion of the library list for our
job:

ADDLIBLE R7399_CCA

b. Allocate a Cryptographic Coprocessor device description to our job:

CALL PGM(CRPALLOC) PARM(CRP03)
Request was successful
Press ENTER to end terminal session.

c. Log on into our Cryptographic Coprocessor:

CALL PGM(LOGON) PARM('ALL' 'all')
Logon was successful
Press ENTER to end terminal session.

d. Generate two asymmetrical key pairs and store both pairs keys (private,public) to the
keystore file, and extract the public keys from this keystore file. Store them to the
stream files:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'TARGET.ENC.01'
 'TARGET.SIG.01'
 'PKASTORET R7399_CCA '
 '*YES'
 '/home/CZ50257/Target.enc.01.pub'
 '/home/CZ50257/Target.sig.01.pub')

>>> PKAKEYGEN <<<
Key store file R7399_CCA/PKASTORET created

Key store designated
SAPI returned 0/0

ENC Record added to key store
SAPI returned 0/0

ENC Key token built
ENC Key generated and stored in key store
SAPI returned 0/0

ENC Public Key extracted from key store
SAPI returned 0/0

ENC Public Key extracted was written to file

SIG Record added to key store
SAPI returned 0/0

SIG Key token built
SIG Key generated and stored in key store
SAPI returned 0/0

SIG Public Key extracted from key store
SAPI returned 0/0

264 IBM System i Security: Protecting i5/OS Data with Encryption

SIG Public Key extracted was written to file
Press ENTER to end terminal session.

e. Transfer two stream files with the public key to the source system (see Example 12-5
on page 245):

/home/CZ50257/Target.enc.01.pub
/home/CZ50257/Target.sig.01.pub

8. Next on the source system we perform the following steps:

a. Add public keys from the transferred stream files from the target system to the keystore
file PKASTORES:

CALL PGM(STRPUBKEY)
 PARM('PKASTORES R7399_CCA '
 '/home/MilanK/Target.enc.01.pub'
 '/home/MilanK/Target.sig.01.pub')

>>> STRPUBKEY <<<
Key store designated
SAPI returned 0/0

ENC Record added to key store
SAPI returned 0/0

SIG Record added to key store
SAPI returned 0/0

Press ENTER to end terminal session.

b. Display text data text01.txt:

DSPF STMF('/home/MilanK/Files/text01.txt')
************Beginning of data**************

0123456789
1234567890
2345678901
3456789012
4567890123
5678901234
6789012345
7890123456
8901234567

* text01 *

 ************End of Data********************

c. Encrypt data text01.txt:

CALL PGM(ENCDATA)
 PARM('/home/MilanK/Files/text01.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'TARGET.ENC.01')
Chapter 12. HW-based method 265

>>> ENCDATA <<< 2007-09-15-14.00.49.5580
Key store designated
SAPI returned 0/0

Hash completed successfully.
SAPI returned 0/0

Signature generation was successful
Signature has length = 64
SAPI returned 0/0

ENC Public Key extracted from key store
SAPI returned 0/0

Random DES-key generated succesfully
SAPI returned 0/0

Signature enciphered succesfully
SAPI returned 0/0

Random DES-key generated succesfully
SAPI returned 0/0

DATA enciphering completed successfully.
SAPI returned 0/0

Press ENTER to end terminal session.

d. Transfer both stream files text01.sig and text01.enc to the target system (Example 12-8
on page 253).

e. Log off from our Cryptographic Coprocessor:

CALL PGM(LOGOFF)
Log off successful
Press ENTER to end terminal session.

f. Deallocate a Cryptographic Coprocessor device description from our job:

CALL PGM(CRPDEALLOC) PARM(CRP02)
Request was successful
Press ENTER to end terminal session.

9. Next on the target system we perform the following steps:

a. Add public keys from the transferred stream files from the source system to the
keystore file PKASTORET:

CALL PGM(STRPUBKEY)
 PARM('PKASTORET R7399_CCA '
 '/home/CZ50257/Source.enc.01.pub'
 '/home/CZ50257/Source.sig.01.pub')

>>> STRPUBKEY <<<
Key store designated
SAPI returned 0/0

ENC Record added to key store
SAPI returned 0/0

266 IBM System i Security: Protecting i5/OS Data with Encryption

SIG Record added to key store
SAPI returned 0/0

Press ENTER to end terminal session.

b. Decrypt the data and store to text01_dec.txt:

CALL PGM(DECDATA)
 PARM('/home/CZ50257/Files/text01_dec.txt'
 '/home/CZ50257/Files/text01.sig'
 '/home/CZ50257/Files/text01.enc'
 'PKASTORET R7399_CCA '
 'SOURCE.SIG.01'
 'TARGET.ENC.01')

>>> DECDATA <<<
 Key store designated
 SAPI returned 0/0
Symetric key Import successful
SAPI returned 0/0

Decipher signature was succesfull 2007-09-15-14.00.49.5580
SAPI returned 0/0

Symetric key Import successful
SAPI returned 0/0

DATA deciphering completed successfully.
SAPI returned 0/0

Hash completed successfully.
SAPI returned 0/0

Signature verification was successful.Return/Reason codes = 0/0
Press ENTER to end terminal session.

c. Display decrypted data text01_dec.txt:

DSPF STMF('/home/MilanK/Files/text01_dec.txt')
************Beginning of data**************

0123456789
1234567890
2345678901
3456789012
4567890123
5678901234
6789012345
7890123456
8901234567

* text01 *

 ************End of Data********************

d. Log off from our Cryptographic Coprocessor:

CALL PGM(LOGOFF)
Log off successful
Chapter 12. HW-based method 267

 Press ENTER to end terminal session.

e. Deallocate a Cryptographic Coprocessor device description from our job:

CALL PGM(CRPDEALLOC) PARM(CRP03)
Request was successful
Press ENTER to end terminal session.

12.5 Data encryption/decryption on same system (scenario B)

In this scenario we have one system with Cryptographic Coprocessor 4758/4764 and we
want to encrypt/decrypt data only on this system. For a scenario description, refer to 12.1.2,
“Scenario B: encryption/decryption of data on the same system” on page 232.

Process summary
This section highlights the tasks to be performed in this scenario:

� System setup and keys generation
� Encrypting data
� Decrypting data
� Logging off and deallocating

12.5.1 Single system scenario: step-by-step guide

This section provides detailed information about each step summarized in the previous
section.

System setup and keys generation
To do this:

1. Specify the library R7399_CCA to be added to the user portion of the library list for our job:

ADDLIBLE LIB(R7399_CCA)

2. Allocate a Cryptographic Coprocessor device description to our job:

CALL PGM(CRPALLOC) PARM(CRP02)

This program uses the Cryptographic_Resource_Allocate (CSUACRA) API verb to
explicitly allocate a cryptographic device to our job so that the system can determine how
to route all subsequent cryptographic requests.

If we use any of the CCA API verbs without first explicitly using the
Cryptographic_Resource_Allocate (CSUACRA) API verb, the system will attempt to
allocate the default cryptographic device. The default device is the cryptographic device
named CRP01. It must be created by either using the Basic Configuration wizard or the
Create Device Crypto (CRTDEVCRP) CL command.

We only need to use CSUACRA when we wish to use a device other than the default
cryptographic device. A device allocated to a job, either explicitly or implicitly, remains
allocated until either the job ends or the device is deallocated using the
Cryptographic_Resource_Deallocate (CSUACRD) API verb.

Note: The program CRPALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
268 IBM System i Security: Protecting i5/OS Data with Encryption

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

3. Log onto the Cryptographic Coprocessor.

We can log on by using the program LOGON that uses the Logon_Control (CSUALCT)
API verb. To start this program we enter the command:

CALL PGM(LOGON) PARM('user ID' 'passphrase')

Where 'user ID' is string that identifies the user to the system and 'passphrase' is data
used in the authentication process.

We need to log on only if we wish to use APIs that use access control points that are not
enabled in the default role. Log on with a profile that uses a role that has the access
control point that we want to use enabled.

4. Generate two asymmetric key pairs.

Generate one pair of asymmetric keys (private, public with the label SOURCE.SIG.01) for
the signing and verification process and one pair of asymmetric keys (private,public with
the label SOURCE.ENC.01) for encrypting and decrypting data, and store both key pairs
in the keystore file PKASTORES.

Run the following command:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'SOURCE.ENC.01'
 'SOURCE.SIG.01'
 'PKASTORES R7399_CCA '
 '*NO '

The parameters and their values in this program execution are:

– *YES: A keystore file, R7399_CCA/PKASTORES, is to be initialized.
– SOURCE.ENC.01: key label of asymmetrical key pair for encryption.
– SOURCE.SIG.01: key label of asymmetrical key pair for signing.
– PKASTORES R7399_CCA: a fully qualified file name of the keystore file.
– *NO: This is not to extract a public key from the keystore file.

Figure 12-20 Generation of the asymmetrical key pairs on the system

Note: The program LOGON is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

PKA key generation on the system

PKA signing key
pair

Public Private

PKA enc/dec
key pair

Private

PKA Key Store File
PKASTORES

Private PublicSOURCE.SIG.01

Signing keys

Enc/Dec keys

 CSUAKSD Key_Storage_Designate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

 CSNDKRC PKA_Key_Record_Create

 CSNDPKG PKA_Key_Generate

Signing
Key pairs

Enc/Dec
Key pairs

Public

CSNBKSI Key_Storage_Initialization

PKA Key Store File
PKASTORES

PublicPrivateSOURCE.ENC.01

Encrypted by Asymmetric Master Key
Chapter 12. HW-based method 269

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

The program PKAKEYGEN creates in key storage file (PKA key-store file) PKASTORES
two records—two key pairs of asymmetric keys (Example 12-1 on page 238).

What PKAKEYGEN performs
For a detailed description of the PKAKEYGEN program, refer to “Description of PKAKEYGEN
program” on page 238.

The only difference from how this program acted for scenario A and here is that we do not
need an extracted public key for encryption and signing (files Source.enc.01.pub and
Source.sig.01.pub) because the encrypting and decrypting process is enacted on the same
system. The keystore file PKASTORES includes all keys needed (Figure 12-20 on page 269):

� SOURCE.ENC.01: public private keys for encryption/decryption
� SOURCE.SIG.01: public private key for signing/verification

Encrypting data
We encrypt stream text file ‘text01.txt’. As a result of our encryption process we have two
files. The first file holds an encrypted text file. This file has the suffix <enc>, as in ‘text01.enc’.
The second file holds the encrypted digital signature of the text file, the date, and the time.
This file has the suffix <sig>, as in ‘text01.sig’.

For encryption we use a generated random double length DATA key. This DATA key is saved
together with the encrypted text file, the digital signature, the date, and the time. The DATA
key is in an encrypt form. It is encrypted by an asymmetric public key (SOURCE.ENC.01).
The structures of these files are shown in Figure 12-11 on page 251 and Figure 12-13 on
page 253.

Run the following command:

CALL PGM(ENCDATA)
 PARM('/home/MilanK/Files/text01.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'SOURCE.ENC.01')

The parameters and their values in this program execution are:

� /home/MilanK/Files/text01.txt: a text file to be encrypted

� /home/MilanK/Files/text01.sig: an encrypted digital signature of the text file, the date, and
the time

� /home/MilanK/Files/text01.enc: an encrypted text file

� PKASTORES R7399_CCA: a fully qualified file name of the keystore file

� SOURCE.SIG.01: key label of the private key for signing the digest of the text file

� SOURCE.ENC.01: key label of the public key for encryption the DATA keys

Description of ENCDATA program
For the ENCDATA prograM:

1. Designate the key-storage file.

For the job that ran our program before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file named R7399_CCA/PKASTORES
270 IBM System i Security: Protecting i5/OS Data with Encryption

is specified as the fourth parameter of the program ENCDATA. In the next steps we use
keys stored in this keystore file.

2. Retrieve the current date and the time and generate the digital signature of the data that
will be encrypted.

We retrieve the current date and the time and calculate the digital signature of the text file
(Figure 12-9 on page 249). This step is the same as steps in scenario A.

3. Generate a random double length DATA key for the encryption of the digital signature, the
date, and the time, and simultaneously encipher it with the public key (SOURCE.ENC.01).

This steps are almost the same as steps in scenario A (Figure 12-21).

Figure 12-21 Sign the DATA key generation on the system

For encryption of the DATA key we use now SOURCE.ENC.01,

4. Encrypt the digital signature, the date, and the time with the generated DATA key. Store
these encrypted data, the length of the enciphered digital signature, and the enciphered
DATA key to the stream file (text01.sig).

These steps are the same as in scenario A (Figure 12-11 on page 251).

PKA Key Store File
PKASTORES

SOURCE.SIG.01

CSNDKRR PKA_Key_Record_Read

Encryption on the system
sign the DATA key generation

CSNDSYG PKA_Symmetric_Key_Generate

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array
key_encrypting_key_identifier Input String 64 bytes (space)
RSA_public_key_identifier_length Input Integer
RSA_public_key_identifier Input String
local_enciphered_key_identifier_length In/Output Integer
local_enciphered_key_identifier In/Output String
RSA_enciphered_key_token_length In/Output Integer
RSA_enciphered_key_token In/Output String

copies a key token from PKA key-storage to
application storage

PKA public
 enc key
(input)

sign the DATA
 encrypted by

(output)

sign the DATA
key

(output)
PKA public

 enc key

Encrypted by Asymmetric Master Key

Public

Public

Public
Chapter 12. HW-based method 271

5. Generate a new random double length DATA key for the encryption of the data and
simultaneously encipher it with the public key (SOURCE.ENC.01), as shown in
Figure 12-22.

Figure 12-22 The DATA key generation on the system

For encryption of the DATA key we use SOURCE.ENC.01.

6. Encrypt the data with the generated random double length DATA key. Store encrypted
data and its length with the enciphered DATA key to the stream file (text01.enc).

These steps are the same as in scenario A (Figure 12-13 on page 253).

This is the end of ENCDATA program description.

Decrypting data
We decrypt two stream files. These two files are a result of our encryption process. The first
one is the file includes the encrypted text file with the suffix enc. The second one includes an
encrypted digital signature of the text file, the date, and the time with the suffix sig.

Run the following command:

CALL PGM(DECDATA)
 PARM('/home/MilanK/Files/text01_dec.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'SOURCE.ENC.01')

The parameters and their values in this program execution are:

� /home/CZ50257/Files/text01_dec.txt: a decrypted text file

� /home/CZ50257/Files/text01.sig: an encrypted digital signature of the text file, the date,
and the time

PKA Key Store File
PKASTORES

SOURCE.ENC.01

CSNDKRR PKA_Key_Record_Read

Encryption on the system
data the DATA key generation

CSNDSYG PKA_Symmetric_Key_Generate

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array
key_encrypting_key_identifier Input String 64 bytes (space)
RSA_public_key_identifier_length Input Integer
RSA_public_key_identifier Input String
local_enciphered_key_identifier_length In/Output Integer
local_enciphered_key_identifier In/Output String
RSA_enciphered_key_token_length In/Output Integer
RSA_enciphered_key_token In/Output String

copies a key token from PKA key-storage to
application storage

PKA public
 enc key
(input)

Data the DATA key
 encrypted by

(output)

data the DATA key
(output)

PKA public
 enc key

Encrypted by Asymmetric Master Key

Public

Public

Public
272 IBM System i Security: Protecting i5/OS Data with Encryption

� /home/CZ50257/Files/text01.enc: an encrypted text file

� PKASTORET R7399_CCA: a fully qualified file name of the keystore file

� SOURCE.SIG.01: key label of the public key for Verification digital signature

� SOURCE.ENC.01: key label of the private key for encryption the DATA keys

Description of DECDATA program
For the DECDATA program:

1. Designate the key-storage file.

For the job that ran our program, before we can perform any operation using the keystore
file or keys stored in this keystore file, we must name the keystore file by the SAPI the
Key_Storage_Designate CSUAKSD. The keystore file named R7399_CCA/PKASTORES
is specified as the fourth parameter of the program ENCDATA. In the next steps we use
keys stored in this keystore file.

2. Decrypt the digital signature.

Decryption the digital signature is done in two steps:

a. Extract the DATA key for decryption of the encrypted digital signature, the date, and
the time in the file /home/CZ50257/Files/text01.sig. The name of this file is specified as
a second parameter of the program ENCDATA (Figure 12-23).

Figure 12-23 Extract sign the DATA key on the system

The SAPI CSNDSYI PKA_Symmetric_Key_Import verb deciphers the RSA-enciphered
symmetric-key to be imported by using an RSA private-key, then multiply-enciphers
the DATA using the master key. The RSA private-key is identified by key label
SOURCE.ENC.01, and it is specified as a sixth parameter of the program DECDATA.
The multiply-enciphered DATA key is used in SAPI CSNBDEC Decipher.

b. Decipher the encrypted digital signature, the date, and the time with the imported DES
symmetric-key. The Decipher verb uses the Data Encryption Standard algorithm and a
cipher the DATA key obtained in a previous step to decipher the digital signature, the
date, and the time (Figure 12-16 on page 259).

D e c ry p tio n o n th e s y s te m
e x tra c t s ig n th e D A T A k e y

C S N D S Y I P K A _ S y m m e tr ic _ K e y _ Im p o r t

C S U A K S D K e y _ S to re _ D e s ig n a te

lo n g R S A _ e n c ip h e re d _ k e y _ to k e n _ le n g th
c h a r R S A _ e n c ip h e re d _ k e y _ to k e n
lo c a l_ e n c ip h e re d _ k e y _ id e n tif ie r_ le n g th
lo c a l_ e n c ip h e re d _ k e y _ id e n tif ie r
in t s ig n a tu re _ f ie ld _ le n g th

c h a r s ig n a tu re _ f ie ld [s ig n a tu re _ f ie ld _ le n g th]

/h o m e /C Z 5 0 2 5 7 /F ile s /
te x t0 1 .s ig

si
gn

at
ur

e_
fie

ld
_l

en
gt

h

s ig n th e
D A T A

 k e y

P K A K e y S to re F ile
P K A S T O R E T

P u b lic – p r iv a te
K e y p a ir

E n c ry p te d b y A s y m m e tr ic M a s te r K e y

c h a r t im e 2 0 0 7 -0 8 -1 7 -0 6 .2 0 .5 9 .6 9 3 0

P K A K e y S to re F ile
P K A S T O R E T

P ub l icP r iva t eS O U R C E .E N C .0 1

P r iva t e
Chapter 12. HW-based method 273

3. Decrypt the data.

Decrypting the data is done in two steps:

a. Extract the DATA key for decrypting the data in the file
/home/CZ50257/Files/text01.enc. The name of this file is specified as a third parameter
of the program ENCDATA. The scheme is outlined in Figure 12-24.

Figure 12-24 Extract data the DATA key on the system

The SAPI CSNDSYI PKA_Symmetric_Key_Import verb deciphers the RSA-enciphered
symmetric-key to be imported by using an RSA private-key, then multiply-enciphers
the DATA key using the master key. The RSA private-key is identified by key label
SOURCE.ENC.01 and is specified as a sixth parameter of the program DECDATA.
The multiply-enciphered DATA is used in SAPI CSNBDEC Decipher.

b. Decipher the data by importing the DATA key. The Decipher verb uses the Data
Encryption Standard algorithm and a cipher DES key obtained in a previous step to
decipher data (ciphertext). This verb results in data called plaintext. The name of this
plaintext file /home/CZ50257/Files/text01_dec.txt is specified as a first parameter of
the program DECDATA.

We use the DATA key obtained in a previous sub-step to decrypt the data. The
scheme is the same as in Figure 12-18 on page 260—decrypting on the target system.
The encrypted data are in the stream file /home/CZ50257/Files/text01.enc, the third
parameter of program DECDATA.

4. Verification process.

On the system we have access to a public signing key SOURCE.SIG.01, and therefore we
can verify information as follows:

a. Hash the data using the same hashing algorithm that we used to create the digital
signature.

b. Decrypt the digital signature using a public signing key.

c. Compare the decrypted results to the hash value obtained from hashing the data.

An equal comparison confirms that the data that they possess is the same as that
which we signed. The (CSNDDSG) Digital_Signature_Generate and the (CSNDDSV)
Digital_Signature_Verity verbs perform the hash encrypting and decrypting operations.

Decryption on the system
extract data the DATA key

CSNDSYI PKA_Sym m etric_Key_Im port

data
 the

DATA
key

long RSA_enciphered_key_token_length
char RSA _enciphered_key_token
local_enciphered_key_identifier_length
local_enciphered_key_identifier
int DATA_length

Char DATA_encrypted

/hom e/CZ50257/F iles/
text01.enc

D
AT

A
_l

en
gt

h

PKA Key Store F ile
PKASTORET

Public – private
Key pair

Encrypted by Asym m etric M aster Key

P ubl icP r ivateSOURCE.ENC.01

P rivate
274 IBM System i Security: Protecting i5/OS Data with Encryption

At the end of this decryption we start the verification process to verify the digital
signature. The scheme is outlined in Figure 12-19 on page 261. The result of this
verification process tell us whether the decrypted text file in the previous step
/home/CZ50257/Files/text01_dec.txt is the same as that which we signed.

This is the end of DECDATA program description.

Logging off and deallocating
When we have finished with our Cryptographic Coprocessor, log off of it.

1. We can log off by using the program LOGOFF that uses the Logon_Control (CSUALCT)
API verb. To start this program we enter the command:

CALL PGM(LOGOFF)

2. Deallocate a Cryptographic Coprocessor device description from our job.

When we have finished using a Cryptographic Coprocessor, we should deallocate the
Cryptographic Coprocessor by using the Cryptographic_Resource_Deallocate
(CSUACRD) API verb. A cryptographic device description cannot be varied off until all
jobs using the device have deallocated it.

To deallocate a Cryptographic Coprocessor device description to our job, we need to
enter the command:

CALL PGM(CRPDEALLOC) PARM(CRP01)

12.5.2 Execution example of scenario B

This section provides an execution example of scenario B. This might sound redundant, and
it is in a way, but it gives you more a hands-on look at the application, along with actual
messages you might see. Consider this as a summary of application description with tagged
along messages.

Environment setup
To set up the environment:

1. Restore library R7399_CCA from the downloaded save file to the source system.

2. Compile the CL program CRTPGM on the source system:

CRTCLPGM PGM(R7399_CCA/CRTPGM)
 SRCFILE(R7399_CCA/QCLSRC)
 SRCMBR(CRTPGM)
 TEXT(*SRCMBRTXT) REPLACE(*YES) TGTRLS(*PRV)

3. To create all programs for our scenario B, we need to start the program CRTPGM on the
source system:

CALL PGM(R7399_CCA/CRTPGM)

Note: The program LOGOFF is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

Note: The program CRPDEALLOC is included also in the manual System i Networking
Cryptographic hardware Version 5 Release 4, available at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
Chapter 12. HW-based method 275

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzajc/rzajc.pdf

4. Create a directory in the source system. <user profile> is MilanK:

MKDIR DIR('/home/<user profile>')
MKDIR DIR('/home/<user profilr>/Files')

5. Restore files that we want to encrypt to the directory /home/<user profile>/Files. In our
scenarios we restore the files text01.txt and text02.txt.

Now we encrypt data text.01 on the source system RCH55. On the Cryptocard
coprocessor CRP02 we created profile ALL with role all in which we enabled all roles that
have the access control point that we want to use.

6. Specify the library R7399_CCA to be added to the user portion of the library list for the our
job:

ADDLIBLE LIB(R7399_CCA)

7. Allocate a Cryptographic Coprocessor device description to our job:

CALL PGM(CRPALLOC) PARM(CRP02)
Request was successful
Press ENTER to end terminal session.

8. Log on into our Cryptographic Coprocessor:

CALL PGM(LOGON) PARM('ALL' 'all')
Logon was successful
Press ENTER to end terminal session.

9. Generate two asymmetric key pairs:

CALL PGM(PKAKEYGEN)
 PARM('*YES'
 'SOURCE.ENC.01'
 'SOURCE.SIG.01'
 'PKASTORES R7399_CCA '
 '*NO ')

>>> PKAKEYGEN <<<
Key store file R7399_CCA/PKASTORES created

Key store designated
SAPI returned 0/0

ENC Record added to key store
SAPI returned 0/0

ENC Key token built
ENC Key generated and stored in key store
SAPI returned 0/0
SIG Record added to key store
SAPI returned 0/0

SIG Key token built
SIG Key generated and stored in key store
SAPI returned 0/0

Press ENTER to end terminal session.

10.Encrypt data.

a. Display text data (plaintext):

DSPF STMF('/home/MilanK/Files/text01.txt')
276 IBM System i Security: Protecting i5/OS Data with Encryption

************Beginning of data**************

0123456789
1234567890
2345678901
3456789012
4567890123
5678901234
6789012345
7890123456
8901234567

* text01 *

 ************End of Data********************

b. Encrypt data, generate ciphertext text01.sig and text01.enc.

CALL PGM(ENCDATA)
 PARM('/home/MilanK/Files/text01.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'SOURCE.ENC.01')

>>> ENCDATA <<< 2007-08-26-12.42.42.5520
Key store designated
SAPI returned 0/0

Hash completed successfully.
SAPI returned 0/0

Signature generation was successful
Signature has length = 64
SAPI returned 0/0

ENC Public Key extracted from key store
SAPI returned 0/0

Random DES-key generated succesfully
SAPI returned 0/0

Signature enciphered succesfully
SAPI returned 0/0

Random DES-key generated succesfully
SAPI returned 0/0

DATA enciphering completed successfully.
SAPI returned 0/0

Press ENTER to end terminal session.

c. Display ciphered data text01.enc and text01.sig:

DSPF STMF('/home/MilanK/Files/text01.enc')
************Beginning of data**************
Chapter 12. HW-based method 277

 ñF 9 ½p DÖ{á/ÔXw*>à¨S]k¼ NU À º YàÝ #?gH's¢ Ò \QöN#vÚé%9 3
°÷ÙÅ á §ÂÅñ _8"{r ' ' s> æ È¶@ Då~§Xm:|dõºÖ2Ü
ÿ ±w
 +Õ /NÖÒ ©Ð vþ ÌU.À½`-÷lÉàS îÎ~âï §)óî ¸Ã×lÊÁï?-½
************End of Data********************

DSPF STMF('/home/MilanK/Files/text01.sig')
************Beginning of data**************
 ñ © Áçòñbb>ô?Ø
*º;Z
 ×?6 Xâ þ& È sm?zÁâ¼AÚq å å#d: Fcw
 °÷Q¾)à(w PÚ 4 ' ' 4 OàgX : *ÓVïpzbÄ
ÌK#{ù úí!
 ************End of Data********************

11.Decrypt the data.

a. Decrypt the data:

CALL PGM(DECDATA)
 PARM('/home/MilanK/Files/text01_dec.txt'
 '/home/MilanK/Files/text01.sig'
 '/home/MilanK/Files/text01.enc'
 'PKASTORES R7399_CCA '
 'SOURCE.SIG.01'
 'SOURCE.ENC.01')

>>> DECDATA <<<
Key store designated
SAPI returned 0/0

Symetric key Import successful
SAPI returned 0/0

Decipher signature was succesfull 2007-08-26-12.42.42.5520
SAPI returned 0/0

Symetric key Import successful
SAPI returned 0/0

DATA deciphering completed successfully.
SAPI returned 0/0

Hash completed successfully.
SAPI returned 0/0

Signature verification was successful.Return/Reason codes = 0/0
Press ENTER to end terminal session.

b. Display decrypted data:

DSPF STMF('/home/MilanK/Files/text01_dec.txt')
************Beginning of data**************

0123456789
1234567890
2345678901
3456789012
4567890123
278 IBM System i Security: Protecting i5/OS Data with Encryption

5678901234
6789012345
7890123456
8901234567

* text01 *

 ************End of Data********************

12.Log off from our Cryptographic Coprocessor:

CALL PGM(LOGOFF)
Log off successful
Press ENTER to end terminal session.

13.Deallocate a Cryptographic Coprocessor device description from our job:

CALL PGM(CRPDEALLOC) PARM(CRP02)
Request was successful
Press ENTER to end terminal session.

Note: A description of SAPI can be found in the manual IBM PCI Cryptographic
Coprocessor, CCA Basic Services Reference and Guide, Release 2.52, IBM iSeries
PCICC Feature, available at:

http://www-306.ibm.com/security/cryptocards/pdfs/IBM_4758_Basic_Services_Release
_2_52.pdf.
Chapter 12. HW-based method 279

http://www-306.ibm.com/security/cryptocards/pdfs/IBM_4758_Basic_Services_Release_2_52.pdf.

280 IBM System i Security: Protecting i5/OS Data with Encryption

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet as described
below.

Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247399

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247399.

Using the Web material

The additional Web material that accompanies this book includes the following files:

File name Description
SG247399.zip Zipped code samples for scenarios described in Chapter 11,

“Cryptographic Services APIs method” on page 133, and Chapter 12,
“HW-based method” on page 229

System requirements for downloading the Web material

We recommend the following system configuration:

Operating system IBM i5/OS V5R4

A

© Copyright IBM Corp. 2008. All rights reserved. 281

ftp://www.redbooks.ibm.com/redbooks/SG247399
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder.
282 IBM System i Security: Protecting i5/OS Data with Encryption

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 283.
Note that some of the documents referenced here may be available in softcopy only.

� IBM System i Security Guide for IBM i5/OS Version 5 Release 4, SG24-6668

� IBM eServer iSeries Wired Network Security: OS/400 V5R1 DCM and Cryptographic
Enhancements, SG24-6168

� Stored Procedures, Triggers, and User-Defined Functions on DB2 Universal Database for
iSeries, SG24-6503

Other publications

These publications are also relevant as further information sources:

� iSeries Security Reference Version 5, SC41-5302-06

� z/OS ICSF Application Programmer's Guide, SA22-7522

Online resources

These Web sites are also relevant as further information sources:

� IBM Information Center, Version 5 Release 4 Web site

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity
.htm

� FIPS Pub 46-3, Data Encryption Standard (DES) description

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

� CCA API set description

http://www-03.ibm.com/security/cryptocards/library.shtml

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks
© Copyright IBM Corp. 2008. All rights reserved. 283

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgicsecurity.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www-03.ibm.com/security/cryptocards/library.shtml

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
284 IBM System i Security: Protecting i5/OS Data with Encryption

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
*BEFORE 99
*CHANGE 99
*INSERT 99
*JOBCTL 106
*SPLCTL 106

Numerics
2058 22
2TDES 14
3TDES 14
4758 22, 61
4764 22, 61
65535 79

A
access points 3
accountability 3
ADDLIBLE 241
ADDPFTRG 99
administrative function 7
Advanced Encryption Standard 11, 14
AES 11, 14, 48
algorithms 8
alter 4
Alternate character set 78
analyzing impact to performance 117
assessments 5
asymmetric algorithms 16
at-rest 6
attorney 45
auditing 8
Auditing Infrastructure 69
auditor 45
authenticating 4
authentication 8
Authentication APIs 133
auxiliary file 100

B
backup copy 90
BER 54
BINARY 116
BLOB 116
block cipher 13
breach 46

C
calculate HASH API 181
Cardholder Information Security Protection 42
CBC mode 74
CCA 23, 229
© Copyright IBM Corp. 2008. All rights reserved.
CCA master keys 63
CCSID 79, 111
CFB 16, 74
CHAR 118
character analysis 100
CHGOBJOWN 66, 68
CHGPF 80
CHGPGM 68
CHGSECAUD 69
chip 23
cipher 12
Cipher Feedback 16
ciphertext 7, 12, 100
CISP 42
clear key 53
Clear key parts 62
clear key values 28
Clear keys 62
Clear Master Key Version 144
clock 56
COBOL 78
Common Cryptographic Architecture 23, 229
compliance 40
compliance regulations 43
comply 3
compromised 33
confidentiality 4
context 54
conversion program 86
conversions 22
coprocessor 57
correcting data sequence 105
cost of translation 33
CPU intensive 27
CPYF 84
CREATE TRIGGER statement 99
CRP01 63
CRP02 63
CRTDEVCRP 241
CRTDUPOBJ 54, 84
CRTLIB 66
CRTUSRPRF 66
cryptanalysts 14
Cryptographic Accelerator 22
cryptographic algorithm 12
Cryptographic Context APIs 133
Cryptographic Coprocessor 22
cryptographic measures 4
cryptographic operations 11
cryptographic service providers 22
cryptographic terms 8
Cryptographic Unit Support Program 15
cryptography 4
cryptoperiod 33
CSP 28
 285

CSPs 22
CSUACRA 241
current 48
CUSP 15
CUSP mode 74
customers 3
CVV 41

D
Data Encryption Algorithm 13
Data Encryption Standard 13
Data File Utility 90
data keys 31
Data Security Operating Policy 42
data sorting 103
data-at-rest 6, 8
database normalization 85, 98
database structure changes 84
Database Triggers 85
data-in-flight 5
data-in-motion 5
DB2 table 116
DCM 23
DEA 13
decrypt the message 13
decryption 8
defense 3
DES 13, 33
DFU 90
Diffie-Hellman 17
Digital Certificate Manager 23
digital media 29
digital signature 21
Digital Signature Standard 18
digital signatures 4
directives 44
disaster recovery strategy 5
DISC 42
Discover Information Security and Compliance 42
Display Physical File Member 95
DSOP 42
DSPAUDJRNE 69
DSPPFM 95
DSPPGMREF 78
DSPSECAUD 69
DSS 18, 41

E
ECB 15
ECC 28
EID 56
Electronic Code Book 15
Eliptic Curve Cryptography 28
employees 3
EMV 23
Encrypted external keys 62
Encrypted internal keys 62
Encrypted key pairs 62
encrypted message 13

encryption 3
Encryption and Decryption APIs 133
encryption technology 3
enterprise 3
entropy 28
environment ID 56
exclusive-ORed 31
exhaustive search 28
existing configuration 6
exit-point technology 8
exposed tape media 6
exposure 28
External key token 58
External Triggers 99
Extraction process 89

F
Federal Information Processing Standard 13
Federal Trade Commission 41
field data length 102
field data tagging 102
field level encryption 20
financial PINs 19
FIPS 13
fixed-function program 106
forward-thinking organizations 5
frequency 33
FTC 41
FTP 8, 240

G
GETHINT 128
GLBA 40
government 40
Gramm-Leach-Bliley Act 40
GRAPHIC 118
GRTOBJAUT 67

H
hardware security module 22
hash MAC 21
hash operation 20
Healthcare Insurance Portability and Accountability Act
41
HEX 79
HIPAA 41
HLL 78
HMAC 21
HMAC keys 51
HSM 22, 57

I
i5/OS Cryptographic Services 23
iASP 111
impact 46
Increased data length 78
industry policy 5
information assets 3
286 IBM System i Security: Protecting i5/OS Data with Encryption

infrastructure 5, 40
initialization vector 15
instill 44
integrated circuit 23
integrity 4
interactive SQL 94
intercepted electronic transmission 4
Internal key token 58
IPSec 5
IV 15, 139

J
J2SDK 22
Java 2 Software Development Kit 22
Java Cryptography Extension 22
JCE 22
JLFs 82
Job Control 106

K
KEK 35, 111
KEKs 31, 51
key context 54
Key Description 53
key destruction 35
key distribution 22
Key Generation APIs 133
Key identifier 60
key in keystore 53
key management 22
Key Management APIs 133
key size 26
key token 58
key values 26
key verification value 32
Key version field 82
Key_Token_Parse 58
keyed hashes 4
key-encrypting keys 31
keystore file 51
KVV 32, 49–50

L
larger key size 26
layers 6
legislation 39
legislative requirements 3
legitimate business purpose 7
legitimate trade off 82
length of each passphrase 146
LIC 18, 30
Licensed Internal Code 18
life-span of a key 33
link level encryption 20
Load Master Key Part 49
lock down 3
Logical file information 85

M
MAC 11
MAC operation 20
market advantage 5
master key 30
Master Key ID 144
master key parts 32
MasterCard Site Data Protection 42
mathematical discipline 4
mathematical procedure 12
MD5 17
MDC 18
mechanism 81
media 5
message authentication 4
message authentication code 11, 20
message digest 20
Message Digest 5 17
modes of operation 15
Modification Detection Code 18
monitor 8

N
National Institute of Standards and Technology 14
needs analysis 40
NERC 43
new KEK 65
new version 49
NIST 14
non-compliance 44
non-digital media 29
non-SQL 115
normalization 81
normalizing the encrypted fields 81
Null key token 58

O
Object-level auditing 69
object-level controls 8
ODBC 8
OFB 16, 74
old KEK 65
old master key 48
one-way hash 17
organization 39
Output Feedback 16

P
PAN 41
Parity tagging 103
partners 3
Passphrase Part 144
password 4
Payment Card Industry 41
PCI 41
PEM 51, 53
performance 26
perimeter 3
 Index 287

permanent DFU programs 92
personal credit information 6
personal identification number 21
phased conversion 87
PHI 41
physical control 6
physical file 99
PIN 21
PKA 16, 55
PKA modulus 27
PKCS 29
plaintext 12, 14, 46
Pre-exclusive-OR 61
Primary Account Number 41
privacy 3
Privacy Enhanced Mail 51
private data 4
private key 16
private/public key pair 16
PRNG 18
proactive 46
processes 44
profile switching 8
proprietary 5
protect 3
Protected Health Information 41
protected key 47
protection 8
pseudorandom number generator 18
Pseudorandom Number Generator APIs 133
Public and Private authorities 85
public domain 12
public key 16
public key algorithm 16
Public-Key Cryptography Standard 29

Q
QA 46
QAC6KEYST 59
QAC6PKEYST 59
QAUDCTL 69
Qc3CalculateHash 149, 178, 181, 190
QC3CALHA 149, 178, 181, 190
Qc3CreateAlgorithmContext 161
Qc3CreateKeyContext 160
Qc3CreateKeyStore 155, 157–158
QC3CRTAX 161
QC3CRTKS 155, 157–158
QC3CRTKX 160
QC3DECDT 190
Qc3DecryptData 190
Qc3DeleteKeyRecord 168
QC3DESAX 167
QC3DESKX 167
Qc3DestroyAlgorithmContext 167
Qc3DestroyKeyContext 167
QC3DLTKR 168
QC3ENCDT 179
Qc3EncryptData 179
Qc3GenKeyRecord 158

QC3GENKR 158
Qc3GenPRNs 176
QC3GENRN 176
QC3GENSK 162
Qc3GenSymmetricKey 162
Qc3RetrieveKeyRecordAtr 173, 189
QC3RTVKA 173, 189
Qc3SetMasterKey 148
QC3SETMK 148
Qc3TestMasterKey 175
Qc3TranslateKeyStore 52, 196
QC3TRNKS 52, 196
QC3TSTMK 175
Qc3WriteKeyRecord 164–165
QC3WRTKR 164–165
QLGSORT 105
QLGSORTIO 105
QTEMP 105
quality assurance 46
quality System i security policy 7
Query/400 93
QUSEADPAUT 68

R
RACE Integrity Primitives Evaluation Message Digest 18
ramifications 44
RC2 14, 75
RC4 15
Record layout modification 84
recovery 56
Redbooks Web site 283

Contact us xii
reference by the starting/ending positions in the record
format 98
reference the ordered fields by length 98
Referential Constraints 85
RIPEMD-160 18
Rivest Cipher 2 14
Rivest Cipher 4 15
Rivest, Shamir, Adleman 17
RPG 78, 102
RSA 17
Run Query 94
Run SQL Statement 94
RUNQRY 94
RUNSQLSTM 94
RVKOBJAUT 67

S
safeguarding your key 12
Sarbanes-Oxley 40
Sarbox 40
SAVLIB 32
SAVOBJ 32
SB-1386 42
scramble 12
SDP 42
search 26
second KEK 65
288 IBM System i Security: Protecting i5/OS Data with Encryption

secrecy 4
secret key algorithm 12
secure channel 137
Secure Electronic Transaction 23
Secure FTP 137
Secure Hash Algorithm 1 18
Secure Hash Algorithm 2 18
secure physical channel 34
security foundation 6
security level 27
security policy 7
segregated test environments 8
sensitivity 33
session level encryption 20
SET 23
Set Master Key 49
SHA-1 18
SHA-2 18
SHA-256 HMAC 75
size of key 26
Sort APIs 105
SOX 40
Spool Control 106
SQL 23
SQL built-ins 23
SQL Triggers 99
SSL 4, 15, 35
SSN 101
standards 40
stream cipher 13
Structured Query Language 23
Subfile-based applications 104
suppliers 3
Switch profile APIs 68
symmetric algorithms 12
symmetric data-encryption keys 34
system assets 3
System-level auditing 69

T
TDES 14, 74
temporary DFU programs 91
temporary mapping file 87
Test Master Key 50
track 35
transformation 12
translate operation 20
transport 57
trigger 86, 99
triggers 44
Triple DES 14

U
UDF 100, 121, 204
unauthorized user 6
unintelligible 4
unscramble 12
Update process 89
User Defined Function 100

User Defined Functions 121
using a trigger to decrypt 100

V
validation 89
VARBINARY 116
VARCHAR 118
VARGRAPHIC 118
VPNs 5

W
Write Key Record API 51

X
XORed 13
 Index 289

290 IBM System i Security: Protecting i5/OS Data with Encryption

IBM
 System

 i Security: Protecting i5/OS Data w
ith Encryption

IBM
 System

 i Security: Protecting
i5/OS Data w

ith Encryption

IBM
 System

 i Security: Protecting
i5/OS Data w

ith Encryption

IBM
 System

 i Security: Protecting i5/OS Data w
ith Encryption

IBM
 System

 i Security: Protecting
i5/OS Data w

ith Encryption

IBM
 System

 i Security: Protecting
i5/OS Data w

ith Encryption

®

SG24-7399-00 ISBN 0738485373

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM System i Security:
Protecting i5/OS Data
with Encryption

Understand key
concepts and
terminology of
cryptography

Properly plan for
i5/OS data encryption

See implementation
scenarios of data
encryption

Regulatory and industry-specific requirements, such as
SOX, Visa PCI, HIPAA, and so on, require that sensitive
data is stored securely and protected against unauthorized
access and modifications. Several requirements state that
data must be encrypted.

IBM i5/OS offers several options that allow customers to
encrypt data in database tables. However, encryption is not
a trivial task. Careful planning is essential for successful
implementation of a data-encryption project. In a worst
case, if improperly encrypted, you would not be able to
retrieve clear text information of encrypted data.

This IBM Redbooks publication will help planners,
implementers, and programmers by providing three key
pieces of information:

� Part 1, “Introduction to data encryption” on page 1,
introduces key concepts, terminology, algorithms, and
key management techniques. Understanding these is
important for following the rest of this book.

� Part 2, “Planning for data encryption” on page 37,
provides critical information about planning a data
encryption project on i5/OS.

� Part 3, “Implementation of data encryption” on
page 113, provides various implementation scenarios
with step-by-step guide.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Introduction to data encryption
	Chapter 1. Data encryption: the big picture
	1.1 Introducing encryption
	1.1.1 What is data encryption
	1.1.2 What drives the requirement
	1.1.3 Where to protect the data

	1.2 Building on top of a secure foundation
	1.2.1 Only one piece of the security puzzle
	1.2.2 Security is not only about privacy
	1.2.3 Surely not on System i
	1.2.4 Security initiatives to consider
	1.2.5 A final word on traditional security

	1.3 What this book is about
	1.3.1 Book objectives
	1.3.2 Book road map

	Chapter 2. Algorithms, operations, and System i implementations
	2.1 Cryptographic algorithms
	2.1.1 Cipher algorithms
	2.1.2 Key distribution algorithms
	2.1.3 One-way hash algorithms
	2.1.4 Random number generation algorithms
	2.1.5 Summary of algorithms

	2.2 Cryptographic operations
	2.2.1 Data confidentiality
	2.2.2 Data authentication, integrity, and non-repudiation
	2.2.3 Key and random number generation
	2.2.4 Financial PINs
	2.2.5 Key management

	2.3 System i cryptographic implementations overview
	2.3.1 Cryptographic service providers
	2.3.2 Cryptographic interfaces

	Chapter 3. Key management concepts
	3.1 Key management considerations
	3.2 Size matters
	3.3 Establishing a key value
	3.3.1 Generating a key value
	3.3.2 Using a known key value

	3.4 Storing keys
	3.5 Key separation
	3.5.1 Key hierarchy
	3.5.2 Key use
	3.5.3 Keystore authorization
	3.5.4 Key management responsibilities

	3.6 Backing up keys
	3.7 Changing keys
	3.8 Key distribution
	3.9 Key destruction

	Part 2 Planning for data encryption
	Chapter 4. Analyzing needs and defining scope
	4.1 Needs analysis
	4.2 Defining the scope
	4.2.1 What data to protect
	4.2.2 Define your requirements
	4.2.3 Evaluate the impact of change
	4.2.4 Return on investment

	Chapter 5. Managing keys on System i
	5.1 Cryptographic services
	5.1.1 Master keys
	5.1.2 Keystore files
	5.1.3 Changing a master key
	5.1.4 Master key variants
	5.1.5 Using keys in an application
	5.1.6 Key distribution
	5.1.7 Generating keys
	5.1.8 Backing up keys

	5.2 CCA key management
	5.2.1 Configuring the cryptographic coprocessor
	5.2.2 Master keys
	5.2.3 Key tokens
	5.2.4 Keystore files
	5.2.5 Retain keys
	5.2.6 Control vectors
	5.2.7 Key identifier
	5.2.8 Key distribution
	5.2.9 Changing master keys
	5.2.10 Generating keys
	5.2.11 Backing up keys
	5.2.12 Using multiple coprocessors

	5.3 Roll your own key management
	5.4 Establishing a secure keystore environment
	5.4.1 Object security 101
	5.4.2 Create user profiles
	5.4.3 Location, location, location
	5.4.4 Secure the keystore
	5.4.5 Accessing the keystore
	5.4.6 Auditing keystore access

	Chapter 6. Choosing a data encryption method
	6.1 Factors to consider
	6.2 Choosing an interface
	6.3 Choosing an algorithm
	6.3.1 Cipher algorithm
	6.3.2 Hash and HMAC algorithms

	6.4 Tips and techniques

	Chapter 7. Database considerations
	7.1 Understanding how the database is used
	7.2 How encryption impacts database structure
	7.2.1 Modifying current record layout structure
	7.2.2 Normalizing the encrypted fields
	7.2.3 Key version field

	7.3 Converting the plaintext data to ciphertext
	7.3.1 Adjusting to database structure changes
	7.3.2 Encrypting existing data
	7.3.3 Reducing the initial data conversion window
	7.3.4 Validating the encrypted data

	7.4 Common tools for data maintenance and inquiry
	7.4.1 AS/400 Data File Utility (DFU)
	7.4.2 IBM Query for i5/OS (Query/400)
	7.4.3 Interactive SQL
	7.4.4 Other tools

	Chapter 8. Application considerations
	8.1 Accommodating database changes
	8.1.1 Record format changes
	8.1.2 Database normalization

	8.2 Working with encrypted data
	8.2.1 Performing encryption tasks with database triggers
	8.2.2 Determining encryption state
	8.2.3 Data sorting
	8.2.4 Random access to encrypted data
	8.2.5 Triggers

	8.3 Other considerations
	8.3.1 Spooled files
	8.3.2 Exported data

	Chapter 9. Backup considerations
	9.1 Managing keys on a backup system
	9.1.1 Coordinating keys between multiple systems
	9.1.2 Translating keystores
	9.1.3 Transporting keys between systems

	9.2 Securing backup data
	9.2.1 Transporting data to the backup system
	9.2.2 Working with encrypted data between multiple systems

	Part 3 Implementation of data encryption
	Chapter 10. SQL method
	10.1 Preparing for encryption
	10.1.1 Encryption prerequisites
	10.1.2 Identifying changes to your database
	10.1.3 Analyzing impact to performance

	10.2 Encrypting data using an encryption password
	10.2.1 Associating a hint with a password
	10.2.2 Using a password in a view
	10.2.3 Using password and hint as encryption parameters

	10.3 Encrypting data with triggers
	10.3.1 Using classical triggers
	10.3.2 Using Instead Of Triggers

	10.4 Using user-defined functions (UDFs) with encrypted data
	10.5 Encrypting with stored procedures

	Chapter 11. Cryptographic Services APIs method
	11.1 Scenario description
	11.1.1 Setting up a master key
	11.1.2 Setting up a symmetric data encryption key
	11.1.3 Encrypting data
	11.1.4 Decrypting data
	11.1.5 Scenario analysis and summary of APIs used

	11.2 Scenario application setup
	11.2.1 Sample application download and initial setup
	11.2.2 Creating commands for sample application scenario

	11.3 Using the scenario application
	11.3.1 Create a master key: SET_MSTR_K command
	11.3.2 Create symmetric keys: GEN_SYMKEY command
	11.3.3 Encrypt data: SET_DATA command
	11.3.4 Decrypt data on source system: GET_DATA command
	11.3.5 Decrypt data on target system
	11.3.6 Execution example of scenario application

	11.4 Another scenario: for external UDFs functions
	11.4.1 External UDFs functions scenario overview
	11.4.2 HASH_DATA UDF function
	11.4.3 DEC_DATA UDF function
	11.4.4 Running DEC_DATA command
	11.4.5 Execution example of external UDFs function scenario
	11.4.6 Using the external trigger function

	Chapter 12. HW-based method
	12.1 Scenario overview
	12.1.1 Scenario A: exchanging secret data between two systems
	12.1.2 Scenario B: encryption/decryption of data on the same system

	12.2 Prerequisites and assumptions
	12.3 Scenario environment setup
	12.4 Exchanging secret data between two systems (scenario A)
	12.4.1 Two systems scenario: step-by-step guide
	12.4.2 Execution example of scenario A

	12.5 Data encryption/decryption on same system (scenario B)
	12.5.1 Single system scenario: step-by-step guide
	12.5.2 Execution example of scenario B

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

